Bass reflex in the context of "Speaker (audio equipment)"

Play Trivia Questions online!

or

Skip to study material about Bass reflex in the context of "Speaker (audio equipment)"




⭐ Core Definition: Bass reflex

A bass reflex system (also known as a ported, vented box or reflex port) is a type of loudspeaker enclosure that uses a port (hole) or vent cut into the cabinet and a section of tubing or pipe affixed to the port. This port enables the sound from the rear side of the diaphragm to increase the efficiency of the system at low frequencies as compared to a typical sealed- or closed-box loudspeaker or an infinite baffle mounting.

A reflex port is the distinctive feature of this popular enclosure type. The design approach enhances the reproduction of the lowest frequencies generated by the woofer or subwoofer. The port generally consists of one or more tubes or pipes mounted in the front (baffle) or rear face of the enclosure. Depending on the exact relationship between driver parameters, the enclosure volume (and filling if any), and the tube cross-section and length, the efficiency can be substantially improved over the performance of a similarly sized sealed-box enclosure.

↓ Menu

In this Dossier

Bass reflex in the context of Loudspeaker

A loudspeaker (commonly referred to as a speaker or, more fully, a speaker system) is a combination of one or more speaker drivers, an enclosure, and electrical connections (possibly including a crossover network). The speaker driver is an electroacoustic transducer that converts an electrical audio signal into a corresponding sound.

The driver is a linear motor connected to a diaphragm, which transmits the motor's movement to produce sound by moving air. An audio signal, typically originating from a microphone, recording, or radio broadcast, is electronically amplified to a power level sufficient to drive the motor, reproducing the sound corresponding to the original unamplified signal. This process functions as the inverse of a microphone. In fact, the dynamic speaker driver—the most common type—shares the same basic configuration as a dynamic microphone, which operates in reverse as a generator.

↑ Return to Menu

Bass reflex in the context of Loudspeaker enclosure

A loudspeaker enclosure or loudspeaker cabinet is an enclosure (often rectangular box-shaped) in which speaker drivers (e.g., woofers and tweeters) and associated electronic hardware, such as crossover circuits and, in some cases, power amplifiers, are mounted. Enclosures may range in design from simple, homemade DIY rectangular particleboard boxes to very complex, expensive computer-designed hi-fi cabinets that incorporate composite materials, internal baffles, horns, bass reflex ports and acoustic insulation. Loudspeaker enclosures range in size from small "bookshelf" speaker cabinets with 4-inch (10 cm) woofers and small tweeters designed for listening to music with a hi-fi system in a private home to huge, heavy subwoofer enclosures with multiple 18-inch (46 cm) or even 21-inch (53 cm) speakers in huge enclosures which are designed for use in stadium concert sound reinforcement systems for rock music concerts.

The primary role of an enclosure is to prevent sound waves generated by the rearward-facing surface of the diaphragm of an open speaker driver interacting with sound waves generated at the front of the speaker driver. Because the forward- and rearward-generated sounds are out of phase with each other, any interaction between the two in the listening space creates a distortion of the original signal as it was intended to be reproduced. As such, a loudspeaker cannot be used without installing it in a baffle of some type, such as a closed box, vented box, open baffle, or a wall or ceiling (infinite baffle).

↑ Return to Menu

Bass reflex in the context of Thiele/Small

Thiele/Small parameters (commonly abbreviated T/S parameters, or TSP) are a set of electromechanical parameters that define the specified low frequency performance of a loudspeaker driver. These parameters are published in specification sheets by driver manufacturers so that designers have a guide in selecting off-the-shelf drivers for loudspeaker designs. Using these parameters, a loudspeaker designer may simulate the position, velocity and acceleration of the diaphragm, the input impedance and the sound output of a system comprising a loudspeaker and enclosure. Many of the parameters are strictly defined only at the resonant frequency, but the approach is generally applicable in the frequency range where the diaphragm motion is largely pistonic, i.e., when the entire cone moves in and out as a unit without cone breakups.

Rather than purchase off-the-shelf components, loudspeaker design engineers often define desired performance and work backwards to a set of parameters and manufacture a driver with said characteristics or order it from a driver manufacturer. This process of generating parameters from a target response is known as synthesis. Thiele/Small parameters are named after A. Neville Thiele of the Australian Broadcasting Commission, and Richard H. Small of the University of Sydney, who pioneered this line of analysis for loudspeakers. A common use of Thiele/Small parameters is in designing PA system and hi-fi speaker enclosures; the TSP calculations indicate to the speaker design professionals how large a speaker cabinet will need to be and how large and long the bass reflex port (if it is used) should be.

↑ Return to Menu