In geology and geomorphology a base level is the lower limit for the vertical position of an erosion process. The modern term was introduced by John Wesley Powell in 1875. The term was subsequently appropriated by William Morris Davis who used it in his cycle of erosion theory. The "ultimate base level" is the surface that results from horizontal projection of the sea level under landmasses (the geoid). It is to this base level that topography tends to approach due to erosion, eventually forming a peneplain close to the end of a cycle of erosion.
There are also lesser structural base levels where erosion is delayed by resistant rocks. Examples of this include karst regions underlain by insoluble rock. Base levels may be local when large landmasses are far from the sea or disconnected from it, as in the case of endorheic basins. An example of this is the Messinian salinity crisis, in which the Mediterranean Sea dried up making the base level drop more than 1000 m below sea level.