BL Lac object in the context of "Blazar"

Play Trivia Questions online!

or

Skip to study material about BL Lac object in the context of "Blazar"

Ad spacer

⭐ Core Definition: BL Lac object

A BL Lacertae object or BL Lac object is a type of active galactic nucleus (AGN) or a galaxy with such an AGN, named after its prototype, BL Lacertae. In contrast to other types of active galactic nuclei, BL Lacs are characterized by rapid and large-amplitude flux variability and significant optical polarization. Because of these properties, the prototype of the class (BL Lac) was originally thought to be a variable star. When compared to the more luminous active nuclei (quasars) with strong emission lines, BL Lac objects have spectra dominated by a relatively featureless non-thermal emission continuum over the entire electromagnetic range. This lack of spectral lines historically hindered identification of the nature and distance of such objects.

In the unified scheme of radio-loud active galactic nuclei, the observed nuclear phenomenology of BL Lacs is interpreted as being due to the effects of the relativistic jet closely aligned to the line of sight of the observer. BL Lacs are thought to be intrinsically identical to low-power radio galaxies. These active nuclei appear to be hosted in massive elliptical galaxies. From the point of AGN classification, BL Lacs are a blazar subtype. All known BL Lacs are associated with core dominated radio sources, many of them exhibiting apparent superluminal motion.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

BL Lac object in the context of Superluminal motion

In astronomy, superluminal motion is the apparently faster-than-light motion seen in some radio galaxies, BL Lac objects, quasars, blazars and recently also in some galactic sources called microquasars. Bursts of energy moving out along the relativistic jets emitted from these objects can have a proper motion that appears greater than the speed of light. All of these sources are thought to contain a black hole, responsible for the ejection of mass at high velocities. Light echoes can also produce apparent superluminal motion.

↑ Return to Menu

BL Lac object in the context of Centaurus A

Centaurus A (also known as NGC 5128 or Caldwell 77) is a galaxy in the constellation of Centaurus. It was discovered in 1826 by Scottish astronomer James Dunlop from his home in Parramatta, in New South Wales, Australia. There is considerable debate in the literature regarding the galaxy's fundamental properties such as its Hubble type (lenticular galaxy or a giant elliptical galaxy) and distance (11–13 million light-years). It is the closest radio galaxy to Earth, as well as the closest BL Lac object, so its active galactic nucleus has been extensively studied by professional astronomers. The galaxy is also the fifth-brightest in the sky, making it an ideal amateur astronomy target. It is only visible from the southern hemisphere and low northern latitudes.

The center of the galaxy contains a supermassive black hole with a mass of 55 million solar masses, which ejects a relativistic jet that is responsible for emissions in the X-ray and radio wavelengths. By taking radio observations of the jet separated by a decade, astronomers have determined that the inner parts of the jet are moving at about half of the speed of light. X-rays are produced farther out as the jet collides with surrounding gases, resulting in the creation of highly energetic particles. The X-ray jets of Centaurus A are thousands of light-years long, while the radio jets are over a million light-years long.

↑ Return to Menu

BL Lac object in the context of BL Lacertae

BL Lacertae or BL Lac is a highly variable, extragalactic active galactic nucleus (AGN or active galaxy). It was first discovered by Cuno Hoffmeister in 1929, but was originally thought to be an irregular variable star in the Milky Way galaxy and so was given a variable star designation. In 1968, the "star" was identified by John Schmitt at the David Dunlap Observatory as a bright, variable radio source. A faint trace of a host galaxy was also found. In 1974, Oke and Gunn measured the redshift of BL Lacertae as z = 0.07, corresponding to a recession velocity of 21,000 km/s with respect to the Milky Way. The redshift figure implies that the object lies at a distance of 900 million light years.

Due to its early discovery, BL Lacertae became the prototype and namesake of the class of active galactic nuclei known as "BL Lacertae objects" or "BL Lac objects". This class is distinguished by rapid and high-amplitude brightness variations and by optical spectra devoid (or nearly devoid) of the broad emission lines characteristic of quasars. These characteristics are understood to result from relativistic beaming of emission from a jet of plasma ejected from the vicinity of a supermassive black hole. BL Lac objects are also categorized as a type of blazar.

↑ Return to Menu