Axioms in the context of "Proof (truth)"

Play Trivia Questions online!

or

Skip to study material about Axioms in the context of "Proof (truth)"

Ad spacer

⭐ Core Definition: Axioms

An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word ἀξίωμα (axíōma), meaning 'that which is thought worthy or fit' or 'that which commends itself as evident'.

The precise definition varies across fields of study. In classic philosophy, an axiom is a statement that is so evident or well-established, that it is accepted without controversy or question. In modern logic, an axiom is a premise or starting point for reasoning.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Axioms in the context of Paradox

A paradox is a logically self-contradictory statement or a statement that runs contrary to one's expectation. It is a statement that, despite apparently valid reasoning from true or apparently true premises, leads to a seemingly self-contradictory or a logically unacceptable conclusion. A paradox usually involves contradictory-yet-interrelated elements that exist simultaneously and persist over time. They result in "persistent contradiction between interdependent elements" leading to a lasting "unity of opposites".

In logic, many paradoxes exist that are invalid arguments, yet are nevertheless valuable in promoting critical thinking, while other paradoxes have revealed errors in definitions that were assumed to be rigorous, and have caused axioms of mathematics and logic to be re-examined. One example is Russell's paradox, which questions whether a "list of all lists that do not contain themselves" would include itself and showed that attempts to found set theory on the identification of sets with properties or predicates were flawed. Others, such as Curry's paradox, cannot be easily resolved by making foundational changes in a logical system.

↑ Return to Menu

Axioms in the context of Formal system

A formal system (or deductive system) is an abstract structure and formalization of an axiomatic system used for deducing, using rules of inference, theorems from axioms.

In 1921, David Hilbert proposed to use formal systems as the foundation of knowledge in mathematics.However, in 1931 Kurt Gödel proved that any consistent formal system sufficiently powerful to express basic arithmetic cannot prove its own completeness. This effectively showed that Hilbert's program was impossible as stated.

↑ Return to Menu

Axioms in the context of Definition

A definition is a statement of the meaning of a term (a word, phrase, or other set of symbols). Definitions can be classified into two large categories: intensional definitions (which try to give the sense of a term), and extensional definitions (which try to list the objects that a term describes). Another important category of definitions is the class of ostensive definitions, which convey the meaning of a term by pointing out examples. A term may have many different senses and multiple meanings, and thus require multiple definitions.

In mathematics, a definition is used to give a precise meaning to a new term, by describing a condition which unambiguously qualifies what the mathematical term is and is not. Definitions and axioms form the basis on which all of modern mathematics is to be constructed.

↑ Return to Menu

Axioms in the context of Self-refuting idea

A self-refuting idea or self-defeating idea is an idea or statement whose falsehood is a logical consequence of the act or situation of holding them to be true. Many ideas are called self-refuting by their detractors, and such accusations are therefore almost always controversial, with defenders stating that the idea is being misunderstood or that the argument is invalid. For these reasons, none of the ideas below are unambiguously or incontrovertibly self-refuting. These ideas are often used as axioms, which are definitions taken to be true (tautological assumptions), and cannot be used to test themselves, for doing so would lead to only two consequences: consistency (circular reasoning) or exception (self-contradiction).

↑ Return to Menu

Axioms in the context of Logical possibility

A logical possibility is a logical proposition that cannot be disproved, using the axioms and rules of a given system of logic. The logical possibility of a proposition will depend upon the system of logic being considered, rather than on the violation of any single rule. Some systems of logic restrict inferences from inconsistent propositions or even allow for true contradictions. Other logical systems have more than two truth-values instead of a binary of such values. Some assume the system in question is classical propositional logic. Similarly, the criterion for logical possibility is often based on whether or not a proposition is contradictory and as such, is often thought of as the broadest type of possibility.

In modal logic, a logical proposition is possible if it is true in some possible world. The universe of "possible worlds" depends upon the axioms and rules of the logical system in which one is working, but given some logical system, any logically consistent collection of statements is a possible world. The modal diamond operator is used to express possibility: denotes "proposition is possible".

↑ Return to Menu