Axial precession in the context of Direct motion


Axial precession in the context of Direct motion

Axial precession Study page number 1 of 2

Play TriviaQuestions Online!

or

Skip to study material about Axial precession in the context of "Direct motion"


⭐ Core Definition: Axial precession

In astronomy, axial precession is a gravity-induced, slow, and continuous change in the orientation of an astronomical body's rotational axis. In the absence of precession, the astronomical body's orbit would show axial parallelism. In particular, axial precession can refer to the gradual shift in the orientation of Earth's axis of rotation in a cycle of approximately 26,000 years. This is similar to the precession of a spinning top, with the axis tracing out a pair of cones joined at their apices. The term "precession" typically refers only to this largest part of the motion; other changes in the alignment of Earth's axis—nutation and polar motion—are much smaller in magnitude.

Earth's precession was historically called the precession of the equinoxes, because the equinoxes moved westward along the ecliptic relative to the fixed stars, opposite to the yearly motion of the Sun along the ecliptic. Historically, the discovery of the precession of the equinoxes is usually attributed in the West to the 2nd-century-BC astronomer Hipparchus. With improvements in the ability to calculate the gravitational force between planets during the first half of the nineteenth century, it was recognized that the ecliptic itself moved slightly, which was named planetary precession, as early as 1863, while the dominant component was named lunisolar precession. Their combination was named general precession, instead of precession of the equinoxes.

↓ Menu
HINT:

In this Dossier

Axial precession in the context of Isaac Newton

Sir Isaac Newton (/ˈnjtən/ ; 4 January [O.S. 25 December] 1643 – 31 March [O.S. 20 March] 1727) was an English polymath active as a mathematician, physicist, astronomer, alchemist, theologian, author, and inventor. He was a key figure in the Scientific Revolution and the Enlightenment that followed. His book Philosophiæ Naturalis Principia Mathematica (Mathematical Principles of Natural Philosophy), first published in 1687, achieved the first great unification in physics and established classical mechanics. Newton also made seminal contributions to optics, and shares credit with German mathematician Gottfried Wilhelm Leibniz for formulating infinitesimal calculus, though he developed calculus years before Leibniz. Newton contributed to and refined the scientific method, and his work is considered the most influential in bringing forth modern science.

In the Principia, Newton formulated the laws of motion and universal gravitation that formed the dominant scientific viewpoint for centuries until it was superseded by the theory of relativity. He used his mathematical description of gravity to derive Kepler's laws of planetary motion, account for tides, the trajectories of comets, the precession of the equinoxes and other phenomena, eradicating doubt about the Solar System's heliocentricity. Newton solved the two-body problem and introduced the three-body problem. He demonstrated that the motion of objects on Earth and celestial bodies could be accounted for by the same principles. Newton's inference that the Earth is an oblate spheroid was later confirmed by the geodetic measurements of Alexis Clairaut, Charles Marie de La Condamine, and others, convincing most European scientists of the superiority of Newtonian mechanics over earlier systems. He was also the first to calculate the age of Earth by experiment, and described a precursor to the modern wind tunnel. Further, he was the first to provide a quantitative estimate of the solar mass.

View the full Wikipedia page for Isaac Newton
↑ Return to Menu

Axial precession in the context of Retrograde and prograde motion

Retrograde motion in astronomy is, in general, orbital or rotational motion of an object in the direction opposite the rotation of its primary, that is, the central object (right figure). It may also describe other motions such as precession or nutation of an object's rotational axis. Prograde or direct motion is more normal motion in the same direction as the primary rotates. However, "retrograde" and "prograde" can also refer to an object other than the primary if so described. The direction of rotation is determined by an inertial frame of reference, such as distant fixed stars.

In the Solar System, the orbits around the Sun of all planets and dwarf planets and most small Solar System bodies, except many comets and few distant objects, are prograde. They orbit around the Sun in the same direction as the sun rotates about its axis, which is counterclockwise when observed from above the Sun's north pole. Except for Venus and Uranus, planetary rotations around their axis are also prograde. Most natural satellites have prograde orbits around their planets. Prograde satellites of Uranus orbit in the direction Uranus rotates, which is retrograde to the Sun. Nearly all regular satellites are tidally locked and thus have prograde rotation. Retrograde satellites are generally small and distant from their planets, except Neptune's satellite Triton, which is large and close. All retrograde satellites are thought to have formed separately before being captured by their planets.

View the full Wikipedia page for Retrograde and prograde motion
↑ Return to Menu

Axial precession in the context of Astronomical nutation

Astronomical nutation is a phenomenon which causes the orientation of the axis of rotation of a spinning astronomical object to vary over time. It is caused by the gravitational forces of other nearby bodies acting upon the spinning object. Although they are caused by the same effect operating over different timescales, astronomers usually make a distinction between precession, which is a steady long-term change in the axis of rotation, and nutation, which is the combined effect of similar shorter-term variations.

An example of precession and nutation is the variation over time of the orientation of the axis of rotation of the Earth. This is important because the most commonly used frame of reference for measurement of the positions of astronomical objects is the Earth's equator — the so-called equatorial coordinate system. The effect of precession and nutation causes this frame of reference itself to change over time, relative to an arbitrary fixed frame.

View the full Wikipedia page for Astronomical nutation
↑ Return to Menu

Axial precession in the context of Equinox (celestial coordinates)

In astronomy, an equinox is either of two places on the celestial sphere at which the ecliptic intersects the celestial equator. Although there are two such intersections, the equinox associated with the Sun's ascending node is used as the conventional origin of celestial coordinate systems and referred to simply as "the equinox". In contrast to the common usage of spring/vernal and autumnal equinoxes, the celestial coordinate system equinox is a direction in space rather than a moment in time.

In a cycle of about 25,800 years, the equinox moves westward with respect to the celestial sphere because of perturbing forces; therefore, in order to define a coordinate system, it is necessary to specify the date for which the equinox is chosen. This date should not be confused with the epoch. Astronomical objects show real movements such as orbital and proper motions, and the epoch defines the date for which the position of an object applies. Therefore, a complete specification of the coordinates for an astronomical object requires both the date of the equinox and of the epoch.

View the full Wikipedia page for Equinox (celestial coordinates)
↑ Return to Menu

Axial precession in the context of Green Sahara

The African humid period (AHP; also known by other names) was a climate period in Africa during the late Pleistocene and Holocene geologic epochs, when northern Africa was wetter than today. The covering of much of the Sahara desert by grasses, trees and lakes was caused by changes in the Earth's axial tilt, changes in vegetation and dust in the Sahara which strengthened the African monsoon, and increased greenhouse gases.During the preceding Last Glacial Maximum, the Sahara contained extensive dune fields and was mostly uninhabited. It was much larger than today, and its lakes and rivers such as Lake Victoria and the White Nile were either dry or at low levels. The humid period began about 14,600–14,500 years ago at the end of Heinrich event 1, simultaneously to the Bølling–Allerød warming. Rivers and lakes such as Lake Chad formed or expanded, glaciers grew on Mount Kilimanjaro and the Sahara retreated. Two major dry fluctuations occurred; during the Younger Dryas and the short 8.2 kiloyear event. The African humid period ended 6,000–5,000 years ago during the Piora Oscillation cold period. While some evidence points to an end 5,500 years ago, in the Sahel, Arabia and East Africa, the end of the period appears to have taken place in several steps, such as the 4.2-kiloyear event.

The AHP led to a widespread settlement of the Sahara and the Arabian Desert, and had a profound effect on African cultures, such as the birth of the Ancient Egyptian civilization. People in the Sahara lived as hunter-gatherers and domesticated cattle, goats and sheep. They left archaeological sites and artifacts such as one of the oldest ships in the world, and rock paintings such as those in the Cave of Swimmers and in the Acacus Mountains. Earlier humid periods in Africa were postulated after the discovery of these rock paintings in now-inhospitable parts of the Sahara. When the period ended, humans gradually abandoned the desert in favour of regions with more secure water supplies, such as the Nile Valley and Mesopotamia, where they gave rise to early complex societies.

View the full Wikipedia page for Green Sahara
↑ Return to Menu

Axial precession in the context of Astrological sign

In Western astrology, astrological signs are the zodiac, twelve 30-degree sectors that are crossed by the Sun's 360-degree orbital path as viewed from Earth in its sky. The signs enumerate from the first day of spring, known as the First Point of Aries, which is the vernal equinox. The astrological signs are Aries, Taurus, Gemini, Cancer, Leo, Virgo, Libra, Scorpio, Sagittarius, Capricorn, Aquarius, and Pisces. The Western zodiac originated in Babylonian astrology, and was later influenced by the Hellenistic culture. Each sign was named after a constellation the sun annually moved through while crossing the sky. This observation is emphasized in the simplified and popular sun sign astrology. Over the centuries, Western astrology's zodiacal divisions have shifted out of alignment with the constellations they were named after by axial precession of the Earth while Hindu astrology measurements correct for this shifting. Astrology (i.e. a system of omina based on celestial appearances) was developed in Chinese and Tibetan cultures as well but these astrologies are not based upon the zodiac but deal with the whole sky.

Astrology is a pseudoscience. Scientific investigations of the theoretical basis and experimental verification of claims have shown it to have no scientific validity or explanatory power. More plausible explanations for the apparent correlation between personality traits and birth months exist, such as the influence of seasonal birth in humans.

View the full Wikipedia page for Astrological sign
↑ Return to Menu

Axial precession in the context of Sirius A

Sirius is the brightest star in the night sky, located in the southern constellation of Canis Major. Its name is derived from the Greek word Σείριος (Latin script: Seirios; lit.'glowing' or 'scorching'). The star is designated α Canis Majoris, Latinized to Alpha Canis Majoris, and abbreviated α CMa or Alpha CMa. With a visual apparent magnitude of −1.46, Sirius is almost twice as bright as Canopus, the next brightest star. Sirius is a binary star consisting of a main-sequence star of spectral type A0 or A1, termed Sirius A, and a faint white dwarf companion of spectral type DA2, termed Sirius B. The distance between the two varies between 8.2 and 31.5 astronomical units as they orbit every 50 years.

Sirius appears bright because of its intrinsic luminosity and its proximity to the Solar System. At a distance of 2.64 parsecs (8.6 ly), the Sirius system is one of Earth's nearest neighbours. Sirius is gradually moving closer to the Solar System and it is expected to increase in brightness slightly over the next 60,000 years to reach a peak magnitude of −1.68.Coincidentally, at about the same time, Sirius will take its turn as the southern Pole Star, around the year 66,270 AD. In that year, Sirius will come to within 1.6 degrees of the south celestial pole. This is due to axial precession and proper motion of Sirius itself which moves slowly in the SSW direction, so it will be visible from the southern hemisphere only. After that time, its distance will begin to increase, and it will become fainter, but it will continue to be the brightest star in the Earth's night sky for approximately the next 210,000 years, at which point Vega, another A-type star that is intrinsically more luminous than Sirius, becomes the brightest star.

View the full Wikipedia page for Sirius A
↑ Return to Menu

Axial precession in the context of Γ Cephei

Gamma Cephei (γ Cephei, abbreviated Gamma Cep, γ Cep) is a binary star system approximately 45 light-years away in the northern constellation of Cepheus. The primary (designated Gamma Cephei A, officially named Errai /ɛˈr./, the traditional name of the system) is a stellar class K1 orange giant or subgiant star; it has a red dwarf companion (Gamma Cephei B). An exoplanet (designated Gamma Cephei Ab, later named Tadmor) has been confirmed to be orbiting the primary.

Gamma Cephei is the naked-eye star that will succeed Polaris as the Earth's northern pole star, due to axial precession. It will be closer to the northern celestial pole than Polaris around 3157 CE and will make its closest approach around 4094 CE. The 'title' will pass to Iota Cephei some time around 5200 CE.

View the full Wikipedia page for Γ Cephei
↑ Return to Menu

Axial precession in the context of Great Year

The term Great Year has multiple meanings. In scientific astronomy, it refers to the time required for the equinoxes to complete one full cycle around the ecliptic, a period of approximately 25,800 years. According to Ptolemy, his teacher Hipparchus discovered this phenomenon by comparing the position of the vernal equinox against the fixed stars, noting that it shifts westward by about one degree every 72 years. This means that a full cycle through all the zodiac constellations takes roughly 25,920 years. In the heliocentric model, this precession can be visualized as the Earth’s rotational axis slowly tracing a circular path around the normal to the plane of the ecliptic. Currently, Earth's axis points close to Polaris, the North Star, but due to precession, this alignment is temporary and will shift over time, returning only after one complete Great Year has passed.

By extension, the term "Great Year" can be used for any concept of eternal return in the world's mythologies or philosophies. Historian Otto Neugebauer writes:

View the full Wikipedia page for Great Year
↑ Return to Menu

Axial precession in the context of Sidereal and tropical astrology

In astrology, sidereal and tropical are terms that refer to two different systems of ecliptic coordinates used to divide the ecliptic into twelve "zodiac signs". Each sign is divided into 30 degrees, making a total of 360 degrees. The terms sidereal and tropical may also refer to two different definitions of a year, applied in sidereal solar calendars or tropical solar calendars.

While sidereal systems of astrology calculate twelve zodiac signs based on the observable sky and thus account for the apparent backwards movement of fixed stars of about 1 degree every 72 years from the perspective of the Earth due to the Earth's axial precession, tropical systems consider 0 degrees of Aries as always coinciding with the March equinox (known as the spring equinox in the Northern Hemisphere) and define twelve zodiac signs from this starting point, basing their definitions upon the seasons and not upon the observable sky wherein the March equinox currently falls in Pisces due to the Earth's axial precession. These differences have caused sidereal and tropical zodiac systems, which were aligned around 2,000 years ago when the March equinox coincided with Aries in the observable sky, to drift apart over the centuries.

View the full Wikipedia page for Sidereal and tropical astrology
↑ Return to Menu

Axial precession in the context of Vernal point

The first point of Aries, also known as the cusp of Aries or the vernal point, is the location of the March equinox (the vernal equinox in the northern hemisphere, and the autumnal equinox in the southern), used as a reference point in celestial coordinate systems. In diagrams using such coordinate systems, it is often indicated with the symbol ♈︎. Named for the constellation of Aries, it is one of the two points on the celestial sphere at which the celestial equator crosses the ecliptic, the other being the first point of Libra, located exactly 180° from it. Due to precession of the equinoxes since the positions were originally named in antiquity, the position of the Sun when at the March equinox is now in Pisces; when it is at the September equinox, it is in Virgo (as of J2000).

Along its yearly path through the zodiac, the Sun meets the celestial equator as it travels from south to north at the first point of Aries, and from north to south at the first point of Libra. The first point of Aries is considered to be the celestial "prime meridian" from which right ascension is calculated.

View the full Wikipedia page for Vernal point
↑ Return to Menu

Axial precession in the context of Age of Aquarius

The Age of Aquarius, in astrology, is either the current or forthcoming astrological age, depending on the method of calculation. Astrologers maintain that an astrological age is a product of the Earth's slow precessional rotation and lasts for 2,160 years, on average (one 25,920 year period of precession, or great year, divided by 12 zodiac signs equals a 2,160 year astrological age).

There are various methods of calculating the boundaries of an astrological age. In Sun-sign astrology, the first sign is Aries, followed by Taurus, Gemini, Cancer, Leo, Virgo, Libra, Scorpio, Sagittarius, Capricorn, Aquarius, and Pisces, whereupon the cycle returns to Aries and through the zodiacal signs again. Astrological ages proceed in the opposite direction. Therefore, the Age of Aquarius follows the Age of Pisces.

View the full Wikipedia page for Age of Aquarius
↑ Return to Menu