Automatic control in the context of Boiler


Automatic control in the context of Boiler

Automatic control Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Automatic control in the context of "Boiler"


⭐ Core Definition: Automatic control

Automation describes a wide range of technologies that reduce human intervention in processes, mainly by predetermining decision criteria, subprocess relationships, and related actions, as well as embodying those predeterminations in machines. Automation has been achieved by various means including mechanical, hydraulic, pneumatic, electrical, electronic devices, and computers, usually in combination. Complicated systems, such as modern factories, airplanes, and ships typically use combinations of all of these techniques. The benefits of automation includes labor savings, reducing waste, savings in electricity costs, savings in material costs, and improvements to quality, accuracy, and precision.

Automation includes the use of various equipment and control systems such as machinery, processes in factories, boilers, and heat-treating ovens, switching on telephone networks, steering, stabilization of ships, aircraft and other applications and vehicles with reduced human intervention. Examples range from a household thermostat controlling a boiler to a large industrial control system with tens of thousands of input measurements and output control signals. Automation has also found a home in the banking industry. It can range from simple on-off control to multi-variable high-level algorithms in terms of control complexity.

↓ Menu
HINT:

In this Dossier

Automatic control in the context of Regulator (automatic control)

In automatic control, a regulator is a device which has the function of maintaining a designated characteristic. It performs the activity of managing or maintaining a range of values in a machine. The measurable property of a device is managed closely by specified conditions or an advance set value; or it can be a variable according to a predetermined arrangement scheme. It can be used generally to connote any set of various controls or devices for regulating or controlling items or objects.

Examples are a voltage regulator (which can be a transformer whose voltage ratio of transformation can be adjusted, or an electronic circuit that produces a defined voltage), a pressure regulator, such as a diving regulator, which maintains its output at a fixed pressure lower than its input, and a fuel regulator (which controls the supply of fuel).

View the full Wikipedia page for Regulator (automatic control)
↑ Return to Menu

Automatic control in the context of Control engineering


Control engineering, also known as control systems engineering and, in some European countries, automation engineering, is an engineering discipline that deals with control systems, applying control theory to design equipment and systems with desired behaviors in control environments. The discipline of controls overlaps and is usually taught along with electrical engineering, chemical engineering and mechanical engineering at many institutions around the world.

The practice uses sensors and detectors to measure the output performance of the process being controlled; these measurements are used to provide corrective feedback helping to achieve the desired performance. Systems designed to perform without requiring human input are called automatic control systems (such as cruise control for regulating the speed of a car). Multi-disciplinary in nature, control systems engineering activities focus on implementation of control systems mainly derived by mathematical modeling of a diverse range of systems.

View the full Wikipedia page for Control engineering
↑ Return to Menu

Automatic control in the context of Linear system

In systems theory, a linear system is a mathematical model of a system based on the use of a linear operator.Linear systems typically exhibit features and properties that are much simpler than the nonlinear case.As a mathematical abstraction or idealization, linear systems find important applications in automatic control theory, signal processing, and telecommunications. For example, the propagation medium for wireless communication systems can often bemodeled by linear systems.

View the full Wikipedia page for Linear system
↑ Return to Menu

Automatic control in the context of Control valves

A control valve is a valve used to control fluid flow by varying the size of the flow passage as directed by a signal from a controller. This enables the direct control of flow rate and the consequential control of process quantities such as pressure, temperature, and liquid level.

In automatic control terminology, a control valve is termed a "final control element".

View the full Wikipedia page for Control valves
↑ Return to Menu