Automated planning in the context of Statistical classification


Automated planning in the context of Statistical classification

Automated planning Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Automated planning in the context of "Statistical classification"


⭐ Core Definition: Automated planning

Automated planning and scheduling, sometimes denoted as simply AI planning, is a branch of artificial intelligence that concerns the realization of strategies or action sequences, typically for execution by intelligent agents, autonomous robots and unmanned vehicles. Unlike classical control and classification problems, the solutions are complex and must be discovered and optimized in multidimensional space. Planning is also related to decision theory.

In known environments with available models, planning can be done offline. Solutions can be found and evaluated prior to execution. In dynamically unknown environments, the strategy often needs to be revised online. Models and policies must be adapted. Solutions usually resort to iterative trial and error processes commonly seen in artificial intelligence. These include dynamic programming, reinforcement learning and combinatorial optimization. Languages used to describe planning and scheduling are often called action languages.

↓ Menu
HINT:

In this Dossier

Automated planning in the context of Action language

In computer science, an action language is a language for specifying state transition systems, and is commonly used to create formal models of the effects of actions on the world. Action languages are commonly used in the artificial intelligence and robotics domains, where they describe how actions affect the states of systems over time, and may be used for automated planning.

Action languages fall into two classes: action description languages and action query languages. Examples of the former include STRIPS, PDDL, Language A (a generalization of STRIPS; the propositional part of Pednault's ADL), Language B (an extension of A adding indirect effects, distinguishing static and dynamic laws) and Language C (which adds indirect effects also, and does not assume that every fluent is automatically "inertial"). There are also the Action Query Languages P, Q and R. Several different algorithms exist for converting action languages, and in particular, action language C, to answer set programs. Since modern answer-set solvers make use of boolean SAT algorithms to very rapidly ascertain satisfiability, this implies that action languages can also enjoy the progress being made in the domain of boolean SAT solving.

View the full Wikipedia page for Action language
↑ Return to Menu

Automated planning in the context of Stanford Research Institute Problem Solver

The Stanford Research Institute Problem Solver, known by its acronym STRIPS, is an automated planner developed by Richard Fikes and Nils Nilsson in 1971 at SRI International. The same name was later used to refer to the formal language of the inputs to this planner. This language is the base for most of the languages for expressing automated planning problem instances in use today; such languages are commonly known as action languages. This article only describes the language, not the planner.

View the full Wikipedia page for Stanford Research Institute Problem Solver
↑ Return to Menu