Australopithecus africanus in the context of "Biped"

Play Trivia Questions online!

or

Skip to study material about Australopithecus africanus in the context of "Biped"

Ad spacer

⭐ Core Definition: Australopithecus africanus

Australopithecus africanus is an extinct species of australopithecine which lived between about 3.3 and 2.1 million years ago in the Late Pliocene to Early Pleistocene of South Africa. The species has been recovered from Taung, Sterkfontein, Makapansgat, and Gladysvale. The first specimen, the Taung child, was described by anatomist Raymond Dart in 1924, and was the first early hominin found. However, its closer relations to humans than to other apes would not become widely accepted until the middle of the century because most had believed humans evolved outside of Africa. It is unclear how A. africanus relates to other hominins, being variously placed as ancestral to Homo and Paranthropus, to just Paranthropus, or to just P. robustus. The specimen "Little Foot" is the most completely preserved early hominin, with 90% of the skeleton intact, and the oldest South African australopith. However, it is controversially suggested that it and similar specimens be split off into "A. prometheus".

A. africanus brain volume was about 420–510 cc (26–31 cu in). Like other early hominins, the cheek teeth were enlarged and had thick enamel. Male skulls may have been more robust than female skulls. Males may have been on average 140 cm (4 ft 7 in) in height and 40 kg (88 lb) in weight, and females 125 cm (4 ft 1 in) and 30 kg (66 lb). A. africanus was a competent biped, albeit less efficient at walking than humans. A. africanus also had several upper body traits in common with arboreal non-human apes. This is variously interpreted as either evidence of a partially or fully arboreal lifestyle, or as a non-functional vestige from a more apelike ancestor. The upper body of A. africanus is more apelike than that of the East African A. afarensis.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Australopithecus africanus in the context of Archaic humans

Homo (from Latin homō 'human') is a genus of great ape (family Hominidae) that emerged from the early homininian genus Australopithecus, encompassing a single extant species, Homo sapiens (modern humans), along with a number of extinct species (e.g. Homo erectus and Homo neanderthalensis) classified as either ancestral or closely related to modern humans, collectively called archaic humans. Homo, together with the genus Paranthropus, is probably most closely related to the species Australopithecus africanus within Australopithecus. The closest living relatives of Homo are of the hominin genus Pan (chimpanzees and bonobos), with the ancestors of Pan and Homo estimated to have diverged around 5.7–11 million years ago during the Late Miocene.

The oldest member of the genus is Homo habilis, with fossil records of just over 2 million years ago. H. erectus appeared about 2 million years ago and spread throughout Africa (debatably as another species called Homo ergaster) and Eurasia in several migrations. The species was adaptive and successful, and persisted for more than a million years before gradually diverging into new species around 500,000 years ago.

↑ Return to Menu

Australopithecus africanus in the context of Hominina

The australopithecines (/ɒˈstrəlˈpɪθəsnz, ˈɔːstrl-/), formally Australopithecina or Hominina, are generally any species in the related genera of Australopithecus and Paranthropus. It may also include members of Kenyanthropus, Ardipithecus, and Praeanthropus. The term comes from a former classification as members of a distinct subfamily, the Australopithecinae. They are classified within the Australopithecina subtribe of the Hominini tribe. These related species are sometimes collectively termed australopithecines, australopiths, or homininians. They are the extinct, close relatives of modern humans and, together with the extant genus Homo, comprise the human clade. There is no general agreement to whether australopithecines are closest relatives of modern humans, as it has been argued that they are more closely related to extant African apes. Members of the human clade, i.e. the Hominini after the split from the chimpanzees, are called Hominina (see Hominidae; terms "hominids" and hominins).

While none of the groups normally directly assigned to this group survived, the australopithecines do not appear to be literally extinct (in the sense of having no living descendants) as the genera Kenyanthropus, Paranthropus, and Homo probably emerged as sisters of a late Australopithecus species such as A. africanus and/or A. sediba.

↑ Return to Menu

Australopithecus africanus in the context of Australopithecus

Australopithecus (/ˌɒstrələˈpɪθɪkəs, -l-/, OS-trə-lə-PITH-i-kəs, -⁠loh-; or /ɒsˌtrələpɪˈθkəs/, os-TRA-lə-pi-THEE-kəs, from Latin austrālis 'southern' and Ancient Greek πίθηκος (píthēkos) 'ape') is a genus of early hominins that existed in Africa during the Pliocene and Early Pleistocene. The genera Homo (which includes modern humans), Paranthropus, and Kenyanthropus evolved from some Australopithecus species. Australopithecus is a member of the subtribe Australopithecina, which sometimes also includes Ardipithecus, though the term "australopithecine" is sometimes used to refer only to members of Australopithecus. Species include A. garhi, A. africanus, A. sediba, A. afarensis, A. anamensis, A. bahrelghazali, and A. deyiremeda. Debate exists as to whether some Australopithecus species should be reclassified into new genera, or if Paranthropus and Kenyanthropus are synonymous with Australopithecus, in part because of the taxonomic inconsistency.

Furthermore, because e.g. A. africanus is more closely related to humans, or their ancestors at the time, than e.g. A. anamensis and many more Australopithecus branches, Australopithecus cannot be consolidated into a coherent grouping without also including the genus Homo and other genera.

↑ Return to Menu

Australopithecus africanus in the context of Homo habilis

Homo habilis (lit. 'handy man') is an extinct species of archaic human from the Early Pleistocene of East and South Africa about 2.4 million years ago to 1.65 million years ago (mya). It is among the oldest species of archaic humans. Suggestions for pushing back the age to 2.8 Mya were made in 2015 based on the discovery of a jawbone. Upon species description in 1964, H. habilis was highly contested, with many researchers recommending it be synonymised with Australopithecus africanus, the only other early hominin known at the time, but H. habilis received more recognition as time went on and more relevant discoveries were made. By the 1980s, H. habilis was proposed to have been a human ancestor, directly evolving into Homo erectus, which directly led to modern humans. This viewpoint is now debated. Several specimens with insecure species identification were assigned to H. habilis, leading to arguments for splitting, namely into "H. rudolfensis" and "H. gautengensis" of which only the former has received wide support.

H. habilis brain size generally varied from 500 to 900 cm (31–55 cu in). The body proportions of H. habilis are only known from two highly fragmentary skeletons, and is based largely on assuming a similar anatomy to the earlier australopithecines. Because of this, it has also been proposed H. habilis be moved to the genus Australopithecus as Australopithecus habilis. However, the interpretation of H. habilis as a small-statured human with inefficient long-distance travel capabilities has been challenged. The presumed female specimen OH 62 is traditionally interpreted as having been 100–120 cm (3 ft 3 in – 3 ft 11 in) in height and 20–37 kg (44–82 lb) in weight assuming australopithecine-like proportions, but assuming humanlike proportions she would have been about 148 cm (4 ft 10 in) and 35 kg (77 lb). Nonetheless, Homo habilis may have been at least partially arboreal like what is postulated for australopithecines. Early hominins are typically reconstructed as having thick hair and marked sexual dimorphism with males much larger than females, though relative male and female size is not definitively known.

↑ Return to Menu

Australopithecus africanus in the context of A. sediba

Australopithecus sediba is an extinct species of australopithecine recovered from Malapa Cave, Cradle of Humankind, South Africa. It is known from a partial juvenile skeleton, the holotype MH1, and a partial adult female skeleton, the paratype MH2. They date to about 1.98 million years ago in the Early Pleistocene, and coexisted with Paranthropus robustus and Homo ergaster / Homo erectus. Malapa Cave may have been a natural death trap, the base of a long vertical shaft which creatures could accidentally fall into. A. sediba was initially described as being a potential human ancestor, and perhaps the progenitor of Homo, but this is contested and it could also represent a late-surviving population or sister species of A. africanus which had earlier inhabited the area.

MH1 has a brain volume of about 350–440 cc, similar to other australopithecines. The face of MH1 is strikingly similar to Homo instead of other australopithecines, with a less pronounced brow ridge, cheek bones, and prognathism (the amount the face juts out), and there is evidence of a slight chin. However, such characteristics could be due to juvenility and lost with maturity. The teeth are quite small for an australopithecine. MH1 is estimated at 130 cm (4 ft 3 in) tall, which would equate to an adult height of 150–156 cm (4 ft 11 in – 5 ft 1 in). MH1 and MH2 were estimated to have been about the same weight at 30–36 kg (66–79 lb). Like other australopithecines, A. sediba is thought to have had a narrow and apelike upper chest, but a broad and humanlike lower chest. Like other australopithecines, the arm anatomy seems to suggest a degree of climbing and arboreal behaviour. The pelvis indicates A. sediba was capable of a humanlike stride, but the foot points to a peculiar gait not demonstrated in any other hominin involving hyperpronation of the ankle, and resultantly rotating the leg inwards while pushing off. This suite of adaptations may represent a compromise between habitual bipedalism and arboreality.

↑ Return to Menu