Auroras in the context of "Electron precipitation"

Play Trivia Questions online!

or

Skip to study material about Auroras in the context of "Electron precipitation"




⭐ Core Definition: Auroras

An aurora (pl. aurorae or auroras) is a natural light display in Earth's sky, predominantly observed in high-latitude regions around the Arctic and Antarctic. The terms northern lights (aurora borealis) and southern lights (aurora australis) are used in the Northern and Southern Hemispheres respectively. Auroras display dynamic patterns of radiant light that appear as curtains, rays, spirals or dynamic flickers covering the entire sky.

Auroras are the result of disturbances in the Earth's magnetosphere caused by enhanced speeds of solar wind from coronal holes and coronal mass ejections. These disturbances alter the trajectories of charged particles in the magnetospheric plasma. These particles, mainly electrons and protons, precipitate into the upper atmosphere (thermosphere/exosphere). The resulting ionization and excitation of atmospheric constituents emit light of varying colour and complexity. The form of the aurora, occurring within bands around both polar regions, is also dependent on the amount of acceleration imparted to the precipitating particles.

↓ Menu

In this Dossier

Auroras in the context of Ionize

Ionization or ionisation is the process by which an atom or a molecule acquires a negative or positive charge by gaining or losing electrons, often in conjunction with other chemical changes. The resulting electrically charged atom or molecule is called an ion. Ionization can result from the loss of an electron after collisions with subatomic particles, collisions with other atoms, molecules, electrons, positrons, protons, antiprotons, and ions, or through the interaction with electromagnetic radiation. Heterolytic bond cleavage and heterolytic substitution reactions can result in the formation of ion pairs. Ionization can occur through radioactive decay by the internal conversion process, in which an excited nucleus transfers its energy to one of the inner-shell electrons causing it to be ejected.

↑ Return to Menu