Atomic radius in the context of "Covalent bonding"

Play Trivia Questions online!

or

Skip to study material about Atomic radius in the context of "Covalent bonding"

Ad spacer

⭐ Core Definition: Atomic radius

The atomic radius of a chemical element is a measure of the size of its atom, usually the mean or typical distance from the center of the nucleus to the outermost isolated electron. Since the boundary is not a well-defined physical entity, there are various non-equivalent definitions of atomic radius. Four widely used definitions of atomic radius are: Van der Waals radius, ionic radius, metallic radius and covalent radius. Typically, because of the difficulty to isolate atoms in order to measure their radii separately, atomic radius is measured in a chemically bonded state; however theoretical calculations are simpler when considering atoms in isolation. The dependencies on environment, probe, and state lead to a multiplicity of definitions.

Depending on the definition, the term may apply to atoms in condensed matter, covalently bonding in molecules, or in ionized and excited states; and its value may be obtained through experimental measurements, or computed from theoretical models. The value of the radius may depend on the atom's state and context.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Atomic radius in the context of Modern physics

Modern physics is a branch of physics that developed in the early 20th century and onward or branches greatly influenced by early 20th century physics. Notable branches of modern physics include quantum mechanics, special relativity, and general relativity.

Classical physics is typically concerned with everyday conditions: speeds are much lower than the speed of light, sizes are much greater than that of atoms, and energies are relatively small. Modern physics, however, is concerned with more extreme conditions, such as high velocities that are comparable to the speed of light (special relativity), small distances comparable to the atomic radius (quantum mechanics), and very high energies (relativity). In general, quantum and relativistic effects are believed to exist across all scales, although these effects may be very small at human scale. While quantum mechanics is compatible with special relativity (See: Relativistic quantum mechanics), one of the unsolved problems in physics is the unification of quantum mechanics and general relativity, which the Standard Model of particle physics currently cannot account for.

↑ Return to Menu

Atomic radius in the context of Caesium

Caesium (IUPAC spelling; also spelled cesium in American English) is a chemical element; it has symbol Cs and atomic number 55. It is a soft, silvery-golden alkali metal with a melting point of 28.5 °C (83.3 °F; 301.6 K), which makes it one of only five elemental metals that are liquid at or near room temperature. Caesium has physical and chemical properties similar to those of rubidium and potassium. It is pyrophoric and reacts with water even at −116 °C (−177 °F). It is the least electronegative stable element, with a value of 0.79 on the Pauling scale. It has only one stable isotope, caesium-133. Caesium is mined mostly from pollucite. Caesium-137, a fission product, is extracted from waste produced by nuclear reactors. It has the largest atomic radius of all elements whose radii have been measured or calculated, at about 260 picometres.

The German chemist Robert Bunsen and physicist Gustav Kirchhoff discovered caesium in 1860 by the newly developed method of flame spectroscopy. The first small-scale applications for caesium were as a "getter" in vacuum tubes and in the light-sensitive anodes of photoelectric cells. Caesium is widely used in highly accurate atomic clocks. In 1967, the International System of Units began using a specific hyperfine transition of neutral caesium-133 atoms to define the basic unit of time, the second.

↑ Return to Menu

Atomic radius in the context of Chalcogen

The chalcogens (/ˈkælkəənz/, KAL-kə-jənz) are the chemical elements in group 16 of the periodic table. This group is also known as the oxygen family. Group 16 consists of the elements oxygen (O), sulfur (S), selenium (Se), tellurium (Te), and the radioactive elements polonium (Po) and livermorium (Lv). Often, oxygen is treated separately from the other chalcogens, sometimes even excluded from the scope of the term "chalcogen" altogether, due to its very different chemical behavior from sulfur, selenium, tellurium, and polonium. The word "chalcogen" means "ore-forming"; chalcogens got their name because protoscientists and early scientists could discern that these essences (which science would later reveal to be chemical elements) were involved in ore formation.

Sulfur has been known since antiquity, and oxygen was recognized as an element in the 18th century. Selenium, tellurium and polonium were discovered in the 19th century, and livermorium in 2000. All of the chalcogens have six valence electrons, leaving them two electrons short of a full outer shell. Their most common oxidation states are −2, +2, +4, and +6. They have relatively small atomic radii, especially the lighter ones.

↑ Return to Menu

Atomic radius in the context of Periodic trends

In chemistry, periodic trends are specific patterns present in the periodic table that illustrate different aspects of certain elements when grouped by period and/or group. They were discovered by the Russian chemist Dimitri Mendeleev in 1863. Major periodic trends include atomic radius, ionization energy, electron affinity, electronegativity, nucleophilicity, electrophilicity, valency, nuclear charge, and metallic character. Mendeleev built the foundation of the periodic table. Mendeleev organized the elements based on atomic weight, leaving empty spaces where he believed undiscovered elements would take their places. Mendeleev's discovery of this trend allowed him to predict the existence and properties of three unknown elements, which were later discovered by other chemists and named gallium, scandium, and germanium. English physicist Henry Moseley discovered that organizing the elements by atomic number instead of atomic weight would naturally group elements with similar properties.

↑ Return to Menu