Atomic orbitals in the context of "P-block"

Play Trivia Questions online!

or

Skip to study material about Atomic orbitals in the context of "P-block"




⭐ Core Definition: Atomic orbitals

In quantum mechanics, an atomic orbital (/ˈɔːrbɪtəl/ ) is a function describing the location and wave-like behavior of an electron in an atom. This function describes an electron's charge distribution around the atom's nucleus, and can be used to calculate the probability of finding an electron in a specific region around the nucleus.

Each orbital in an atom is characterized by a set of values of three quantum numbers n, , and m, which respectively correspond to an electron's energy, its orbital angular momentum, and its orbital angular momentum projected along a chosen axis (magnetic quantum number). The orbitals with a well-defined magnetic quantum number are generally complex-valued. Real-valued orbitals can be formed as linear combinations of m and −m orbitals, and are often labeled using associated harmonic polynomials (e.g., xy, xy) which describe their angular structure.

↓ Menu

In this Dossier

Atomic orbitals in the context of D-block

A block of the periodic table is a set of elements unified by the atomic orbitals their valence electrons or vacancies lie in. The term seems to have been first used by Charles Janet. Each block is named after its characteristic orbital: s-block, p-block, d-block, f-block and g-block.

The block names (s, p, d, and f) are derived from the spectroscopic notation for the value of an electron's azimuthal quantum number: sharp (0), principal (1), diffuse (2), and fundamental (3). Succeeding notations proceed in alphabetical order, as g, h, etc., though elements that would belong in such blocks have not yet been found.

↑ Return to Menu

Atomic orbitals in the context of X-ray notation

X-ray notation is a method of labeling atomic orbitals that grew out of X-ray science. Also known as IUPAC notation, it was adopted by the International Union of Pure and Applied Chemistry in 1991 as a simplification of the older Siegbahn notation. In X-ray notation, every principal quantum number is given a letter associated with it. In many areas of physics and chemistry, atomic orbitals are described with spectroscopic notation (1s, 2s, 2p, 3s, 3p, etc.), but the more traditional X-ray notation is still used with most X-ray spectroscopy techniques including AES and XPS.

↑ Return to Menu