Atomic mass number in the context of "Baryon number"

Play Trivia Questions online!

or

Skip to study material about Atomic mass number in the context of "Baryon number"




⭐ Core Definition: Atomic mass number

The mass number (symbol A, from the German word: Atomgewicht, "atomic weight"), also called atomic mass number or nucleon number, is the total number of protons and neutrons (together known as nucleons) in an atomic nucleus. It is approximately equal to the atomic (also known as isotopic) mass of the atom expressed in daltons. Since protons and neutrons are both baryons, the mass number A is identical with the baryon number B of the nucleus (and also of the whole atom or ion). The mass number is different for each isotope of a given chemical element, and the difference between the mass number and the atomic number Z gives the number of neutrons (N) in the nucleus: N = AZ.

The mass number is written either after the element name or as a superscript to the left of an element's symbol. For example, the most common isotope of carbon is carbon-12, or
C
, which has 6 protons and 6 neutrons. The full isotope symbol would also have the atomic number (Z) as a subscript to the left of the element symbol directly below the mass number:
6
C
.

↓ Menu

In this Dossier

Atomic mass number in the context of Atomic number

The atomic number or nuclear charge number (symbol Z) of a chemical element is the charge number of its atomic nucleus. For ordinary nuclei composed of protons and neutrons, this is equal to the proton number (np) or the number of protons found in the nucleus of every atom of that element. The atomic number can be used to uniquely identify ordinary chemical elements. In an ordinary uncharged atom, the atomic number is also equal to the number of electrons.

For an ordinary atom which contains protons, neutrons and electrons, the sum of the atomic number Z and the neutron number N gives the atom's atomic mass number A. Since protons and neutrons have approximately the same mass (and the mass of the electrons is negligible for many purposes) and the mass defect of the nucleon binding is always small compared to the nucleon mass, the atomic mass of any atom, when expressed in daltons (making a quantity called the "relative isotopic mass"), is within 1% of the whole number A.

↑ Return to Menu

Atomic mass number in the context of Isotopes of gallium

Natural gallium (31Ga) consists of a mixture of two stable isotopes: gallium-69 and gallium-71. Synthetic radioisotopes are known with atomic masses ranging from 60 to 89, along with seven nuclear isomers. Most of the isotopes with atomic mass numbers below 69 decay by electron capture and positron emission to isotopes of zinc, while most of the isotopes with masses above 71 beta decay to isotopes of germanium.

The medically important radioisotopes are gallium-67 and gallium-68, used for imaging, and further described below.

↑ Return to Menu