Atomic mass in the context of Seed nucleus


Atomic mass in the context of Seed nucleus

Atomic mass Study page number 1 of 2

Play TriviaQuestions Online!

or

Skip to study material about Atomic mass in the context of "Seed nucleus"


⭐ Core Definition: Atomic mass

Atomic mass (ma or m) is the mass of a single atom. The atomic mass mostly comes from the combined mass of the protons and neutrons in the nucleus, with minor contributions from the electrons and nuclear binding energy. The atomic mass of atoms, ions, or atomic nuclei is slightly less than the sum of the masses of their constituent protons, neutrons, and electrons, due to mass defect (explained by mass–energy equivalence: E = mc).

Atomic mass is often measured in dalton (Da) or unified atomic mass unit (u). One dalton is equal to +1/12 the mass of a carbon-12 atom in its natural state, given by the atomic mass constant mu = m(C)/12 = 1 Da, where m(C) is the atomic mass of carbon-12. Thus, the numerical value of the atomic mass of a nuclide when expressed in daltons is close to its mass number.

↓ Menu
HINT:

In this Dossier

Atomic mass in the context of Isotope

Isotopes are distinct nuclear species (or nuclides) of the same chemical element. They have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), but different nucleon numbers (mass numbers) due to different numbers of neutrons in their nuclei. While all isotopes of a given element have virtually the same chemical properties, they have different atomic masses and physical properties.

The term isotope comes from the Greek roots isos (ἴσος "equal") and topos (τόπος "place"), meaning "the same place": different isotopes of an element occupy the same place on the periodic table. It was coined by Scottish doctor and writer Margaret Todd in a 1913 suggestion to the British chemist Frederick Soddy, who popularized the term.

View the full Wikipedia page for Isotope
↑ Return to Menu

Atomic mass in the context of Atomic number

The atomic number or nuclear charge number (symbol Z) of a chemical element is the charge number of its atomic nucleus. For ordinary nuclei composed of protons and neutrons, this is equal to the proton number (np) or the number of protons found in the nucleus of every atom of that element. The atomic number can be used to uniquely identify ordinary chemical elements. In an ordinary uncharged atom, the atomic number is also equal to the number of electrons.

For an ordinary atom which contains protons, neutrons and electrons, the sum of the atomic number Z and the neutron number N gives the atom's atomic mass number A. Since protons and neutrons have approximately the same mass (and the mass of the electrons is negligible for many purposes) and the mass defect of the nucleon binding is always small compared to the nucleon mass, the atomic mass of any atom, when expressed in daltons (making a quantity called the "relative isotopic mass"), is within 1% of the whole number A.

View the full Wikipedia page for Atomic number
↑ Return to Menu

Atomic mass in the context of Carbon-12

Carbon-12 (C) is the most abundant of the two stable isotopes of carbon (carbon-13 being the other), amounting to 98.93% of element carbon on Earth; its abundance is due to the triple-alpha process by which it is created in stars. Carbon-12 is of particular importance in its use as the standard from which atomic masses of all nuclides are measured, thus, its atomic mass is exactly 12 daltons by definition. Carbon-12 is composed of 6 protons, 6 neutrons, and 6 electrons.

See carbon-13 for means of separating the two isotopes, thereby enriching both.

View the full Wikipedia page for Carbon-12
↑ Return to Menu

Atomic mass in the context of Alkali metal nitrate

Alkali metal nitrates are chemical compounds consisting of an alkali metal (lithium, sodium, potassium, rubidium and caesium) and the nitrate ion. Only two are of major commercial value, the sodium and potassium salts. They are white, water-soluble salts with melting points ranging from 255 °C (LiNO
3
) to 414 °C (CsNO
3
) on a relatively narrow span of 159 °C

The melting point of the alkali metal nitrates tends to increase from 255 °C to 414 °C (with an anomaly for rubidium being not properly aligned in the series) as the atomic mass and the ionic radius (naked cation) of the alkaline metal increases, going down in the column. Similarly, but not presented here in the table, the solubility of these salts in water also decreases with the atomic mass of the metal.

View the full Wikipedia page for Alkali metal nitrate
↑ Return to Menu

Atomic mass in the context of Dalton (unit)

The dalton or unified atomic mass unit (symbols: Da or u, respectively) is a unit of mass defined as 1/12 of the mass of an unbound neutral atom of carbon-12 in its nuclear and electronic ground state and at rest. It is a non-SI unit accepted for use with SI. The word "unified" emphasizes that the definition was accepted by both IUPAP and IUPAC. The atomic mass constant, denoted mu, is an atomic-scale reference mass, defined identically, but it is not a unit of mass. Expressed in terms of ma(C), the atomic mass of carbon-12: mu = ma(C)/12 = 1 Da. The dalton's numerical value in terms of the fixed-h kilogram is an experimentally determined quantity that, along with its inherent uncertainty, is updated periodically. As listed in the 9th edition, version 3.02, of the SI Brochure, the 2022 CODATA recommended value of the atomic mass constant expressed in the SI base unit kilogram is:

The previous value given for the dalton (1 Da = 1 u = mu) was the 2018 CODATA recommended value:

View the full Wikipedia page for Dalton (unit)
↑ Return to Menu

Atomic mass in the context of Discovery of the neutron

The discovery of the neutron and its properties was central to the extraordinary developments in atomic physics in the first half of the 20th century. Early in the century, Ernest Rutherford used alpha particle scattering to discover that an atom has its mass and electric charge concentrated in a tiny nucleus. By 1920, isotopes of chemical elements had been discovered, the atomic masses had been determined to be approximately integer multiples of the mass of the hydrogen atom, and the atomic number had been identified as the charge on the nucleus. Throughout the 1920s, the nucleus was viewed as composed of combinations of protons and electrons, the two elementary particles known at the time, but that model presented several experimental and theoretical contradictions.

The essential nature of the atomic nucleus was established with the discovery of the neutron by James Chadwick in 1932 and the determination that it was a new elementary particle, distinct from the proton.

View the full Wikipedia page for Discovery of the neutron
↑ Return to Menu

Atomic mass in the context of Oganesson

Oganesson is a synthetic chemical element; it has symbol Og and atomic number 118. It was first synthesized in 2002 at the Joint Institute for Nuclear Research (JINR) in Dubna, near Moscow, Russia, by a joint team of Russian and American scientists. In December 2015, it was recognized as one of four new elements by the Joint Working Party of the international scientific bodies IUPAC and IUPAP. It was formally named on 28 November 2016. The name honors the nuclear physicist Yuri Oganessian, who played a leading role in the discovery of the heaviest elements in the periodic table.

Oganesson has the highest atomic number and highest atomic mass of all known elements. On the periodic table of the elements it is a p-block element, a member of group 18, and the last member of period 7. Its only known isotope, oganesson-294, is highly radioactive, with a half-life of 0.7 ms and, as of 2025, only five atoms have been successfully produced. This has so far prevented any experimental studies of its chemistry. Because of relativistic effects, theoretical studies predict that it would be a solid at room temperature, and significantly reactive, unlike the other members of group 18 (the noble gases).

View the full Wikipedia page for Oganesson
↑ Return to Menu

Atomic mass in the context of Mass number

The mass number (symbol A, from the German word: Atomgewicht, "atomic weight"), also called atomic mass number or nucleon number, is the total number of protons and neutrons (together known as nucleons) in an atomic nucleus. It is approximately equal to the atomic (also known as isotopic) mass of the atom expressed in daltons. Since protons and neutrons are both baryons, the mass number A is identical with the baryon number B of the nucleus (and also of the whole atom or ion). The mass number is different for each isotope of a given chemical element, and the difference between the mass number and the atomic number Z gives the number of neutrons (N) in the nucleus: N = AZ.

The mass number is written either after the element name or as a superscript to the left of an element's symbol. For example, the most common isotope of carbon is carbon-12, or
C
, which has 6 protons and 6 neutrons. The full isotope symbol would also have the atomic number (Z) as a subscript to the left of the element symbol directly below the mass number:
6
C
.

View the full Wikipedia page for Mass number
↑ Return to Menu

Atomic mass in the context of Type II supernova

A Type II supernova or SNII (plural: supernovae) results from the violent explosion of a massive star following the rapid collapse of its core. A star must have at least eight times, but no more than 40 to 50 times, the mass of the Sun (M) to undergo this type of explosion. Type II supernovae are distinguished from other types of supernovae by the presence of hydrogen in their spectra. They are usually observed in the spiral arms of galaxies and in H II regions, but not in elliptical galaxies; those are generally composed of older, low-mass stars, with few of the young, very massive stars necessary to cause a supernova.

Stars generate energy by the nuclear fusion of elements. Unlike the Sun, massive stars possess the mass needed to fuse elements that have an atomic mass greater than hydrogen and helium, albeit at increasingly higher temperatures and pressures, causing correspondingly shorter stellar life spans. The degeneracy pressure of electrons and the energy generated by these fusion reactions are sufficient to counter the force of gravity and prevent the star from collapsing, maintaining stellar equilibrium. The star fuses increasingly higher mass elements, starting with hydrogen and then helium, progressing up through the periodic table until a core of iron and nickel is produced. Fusion of iron or nickel produces no net energy output, so no further fusion can take place, leaving the nickel–iron core inert. Due to the lack of energy output creating outward thermal pressure, the core contracts due to gravity until the overlying weight of the star can be supported largely by electron degeneracy pressure.

View the full Wikipedia page for Type II supernova
↑ Return to Menu

Atomic mass in the context of Isotopes of nitrogen

Natural nitrogen (7N) consists of two stable isotopes: the vast majority (99.62%) of naturally occurring nitrogen is nitrogen-14, with the remainder (0.38%) being nitrogen-15. Thirteen radioisotopes are also known, with atomic masses ranging from 9 to 23, along with three nuclear isomers. All of these radioisotopes are short-lived, the longest-lived being N with a half-life of 9.965 minutes. All of the others have half-lives shorter than ten seconds. Isotopes lighter than the stable ones generally decay to isotopes of carbon, and those heavier beta decay to isotopes of oxygen.

Nitrogen-13 is a positron emitter and one of the main isotopes used in medical PET scans.

View the full Wikipedia page for Isotopes of nitrogen
↑ Return to Menu

Atomic mass in the context of Oxygen isotope ratio cycle

Oxygen isotope ratio cycles are cyclical variations in the ratio of the abundance of oxygen with an atomic mass of 18 to the abundance of oxygen with an atomic mass of 16 present in some substances, such as polar ice or calcite in ocean core samples, measured with the isotope fractionation. The ratio is linked to ancient ocean temperature which in turn reflects ancient climate. Cycles in the ratio mirror climate changes in the geological history of Earth.

View the full Wikipedia page for Oxygen isotope ratio cycle
↑ Return to Menu

Atomic mass in the context of Beryllium

Beryllium is a chemical element; it has symbol Be and atomic number 4. It is a steel-gray, hard, strong, lightweight and brittle alkaline earth metal. It is a divalent element that occurs naturally only in combination with other elements to form minerals. Gemstones high in beryllium include beryl (aquamarine, emerald, red beryl) and chrysoberyl. It is a relatively rare element in the universe, usually occurring as a product of the spallation of larger atomic nuclei that have collided with cosmic rays. Within the cores of stars, beryllium is depleted as it is fused into heavier elements. Beryllium constitutes about 0.0004 percent by mass of Earth's crust. The world's annual beryllium production of 220 tons is usually manufactured by extraction from the mineral beryl, a difficult process because beryllium bonds strongly to oxygen.

In structural applications, the combination of high flexural rigidity, thermal stability, thermal conductivity and low density (1.85 times that of water) make beryllium a desirable aerospace material for aircraft components, missiles, spacecraft, and satellites. Because of its low density and atomic mass, beryllium is relatively transparent to X-rays and other forms of ionizing radiation; therefore, it is the most common window material for X-ray equipment and components of particle detectors. When added as an alloying element to aluminium, copper (notably the alloy beryllium copper), iron, or nickel, beryllium improves many physical properties. For example, tools and components made of beryllium copper alloys are strong and hard and do not create sparks when they strike a steel surface. In air, the surface of beryllium oxidizes readily at room temperature to form a passivation layer 1–10 nm thick that protects it from further oxidation and corrosion. The metal oxidizes in bulk (beyond the passivation layer) when heated above 500 °C (932 °F), and burns brilliantly when heated to about 2,500 °C (4,530 °F).

View the full Wikipedia page for Beryllium
↑ Return to Menu

Atomic mass in the context of Tennessine

Tennessine is a synthetic element; it has symbol Ts and atomic number 117. It has the second-highest atomic number, the joint-highest atomic mass of all known elements, and is the penultimate element of the 7th period of the periodic table. It is named after the U.S. state of Tennessee, where key research institutions involved in its discovery are located (however, the IUPAC says that the element is named after the "region of Tennessee").

The discovery of tennessine was officially announced in Dubna, Russia, by a Russian–American collaboration in April 2010, which makes it the most recently discovered element. One of its daughter isotopes was created directly in 2011, partially confirming the experiment's results. The experiment was successfully repeated by the same collaboration in 2012 and by a joint German–American team in May 2014. In December 2015, the Joint Working Party of the International Union of Pure and Applied Chemistry (IUPAC) and the International Union of Pure and Applied Physics (IUPAP), which evaluates claims of discovery of new elements, recognized the element and assigned the priority to the Russian–American team. In June 2016, the IUPAC published a declaration stating that the discoverers had suggested the name tennessine, a name which was officially adopted in November 2016.

View the full Wikipedia page for Tennessine
↑ Return to Menu

Atomic mass in the context of Rutherford model

The Rutherford model is a name for the concept that an atom contains a compact nucleus. The concept arose after Ernest Rutherford directed the Geiger–Marsden experiment in 1909, which showed much more alpha particle recoil than J. J. Thomson's plum pudding model of the atom could explain. Thomson's model had positive charge spread out in the atom. Rutherford's analysis proposed a high central charge concentrated into a very small volume in comparison to the rest of the atom and with this central volume containing most of the atom's mass. The central region would later be known as the atomic nucleus. Rutherford did not discuss the organization of electrons in the atom and did not himself propose a model for the atom. Niels Bohr joined Rutherford's lab and developed a theory for the electron motion which became known as the Bohr model.

View the full Wikipedia page for Rutherford model
↑ Return to Menu

Atomic mass in the context of Mononuclidic element

A mononuclidic element or monotopic element is one of the 21 chemical elements that is found naturally on Earth essentially as a single nuclide (which may, or may not, be a stable nuclide). This single nuclide will have a characteristic atomic mass. Thus, the element's natural isotopic abundance is dominated by one isotope that is either stable or very long-lived. There are 19 elements in the first category (which are both monoisotopic and mononuclidic), and 2 (bismuth and protactinium) in the second category (mononuclidic but not monoisotopic, since they have zero, not one, stable nuclides). A list of the 21 mononuclidic elements is given at the end of this article.

Of the 26 monoisotopic elements that, by definition, have only one stable isotope, seven are not considered mononuclidic, due to the presence of a significant fraction of a very long-lived (primordial) radioisotope. These elements are vanadium, rubidium, indium, lanthanum, europium, lutetium, and rhenium.

View the full Wikipedia page for Mononuclidic element
↑ Return to Menu