Astrophysical jet in the context of "Ionization"

Play Trivia Questions online!

or

Skip to study material about Astrophysical jet in the context of "Ionization"

Ad spacer

⭐ Core Definition: Astrophysical jet

An astrophysical jet is an astronomical phenomenon where ionised matter is expelled at high velocity from an astronomical object, in a pair of narrow streams aligned with the object's axis of rotation. When the matter in the beam approaches the speed of light, astrophysical jets become relativistic jets as they show effects from special relativity.

Astrophysical jets are associated with many types of high-energy astronomical sources, such as black holes, neutron stars and pulsars. Their causes are not yet fully understood, but they are believed to arise from dynamic interactions within accretion disks. One explanation is that as an accretion disk spins, it generates a rotating, tangled magnetic field which concentrates material from the disk into the jets and then drives it away from the central object. Jets may also be influenced by a general relativity effect known as frame-dragging.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Astrophysical jet in the context of Quasar

A quasar (/ˈkwzɑːr/ KWAY-zar) is an extremely luminous active galactic nucleus (AGN). It is sometimes known as a quasi-stellar object, abbreviated QSO. The emission from an AGN is powered by accretion onto a supermassive black hole with a mass ranging from millions to tens of billions of solar masses, surrounded by a gaseous accretion disc. Gas in the disc falling towards the black hole heats up and releases energy in the form of electromagnetic radiation. The radiant energy of quasars is enormous; the most powerful quasars have luminosities thousands of times greater than that of a galaxy such as the Milky Way. Quasars are usually categorized as a subclass of the more general category of AGN. The redshifts of quasars are of cosmological origin.

↑ Return to Menu

Astrophysical jet in the context of Blazar

A blazar is an active galactic nucleus (AGN) with a relativistic jet – a jet composed of ionized matter traveling at nearly the speed of light – directed very nearly towards an observer. Relativistic beaming of electromagnetic radiation from the jet makes blazars appear much brighter than they would be if the jet were pointed in a direction away from Earth. Blazars are powerful sources of emission across the electromagnetic spectrum and are observed to be sources of high-energy gamma ray photons. Blazars are highly variable sources, often undergoing rapid and dramatic fluctuations in brightness on short timescales (hours to days). Some blazar jets appear to exhibit superluminal motion, another consequence of material in the jet traveling toward the observer at nearly the speed of light.

The blazar category is sub-divided into BL Lac objects and flat-spectrum radio quasars (FSRQ), with the former having weak or no emission lines and the latter showing strong emission lines. The generally accepted theory is that BL Lac objects are intrinsically low-power radio galaxies while FSRQ quasars are intrinsically powerful radio-loud quasars. The name "blazar" was coined in 1978 by astronomer Edward Spiegel to denote the combination of these two classes. In visible-wavelength images, most blazars appear compact and pointlike, but high-resolution images reveal that they are located at the centers of elliptical galaxies.

↑ Return to Menu

Astrophysical jet in the context of Mass–energy equivalence

In physics, mass–energy equivalence is the relationship between mass and energy in a system's rest frame. The two differ only by a multiplicative constant and the units of measurement. The principle is described by the physicist Albert Einstein's formula: . In a reference frame where the system is moving, its relativistic energy and relativistic mass (instead of rest mass) obey the same formula.

The formula defines the energy (E) of a particle in its rest frame as the product of mass (m) with the speed of light squared (c). Because the speed of light is a large number in everyday units (approximately 300000 km/s or 186000 mi/s), the formula implies that a small amount of mass corresponds to an enormous amount of energy.

↑ Return to Menu

Astrophysical jet in the context of Active galactic nucleus

An active galactic nucleus (AGN) is a compact region at the center of a galaxy that emits a significant amount of energy across the electromagnetic spectrum, with characteristics indicating that this luminosity is not produced by the stars. Such excess, non-stellar emissions have been observed in the radio, microwave, infrared, optical, ultra-violet, X-ray, and gamma ray wavebands. A galaxy hosting an AGN is called an active galaxy. The non-stellar radiation from an AGN is theorized to result from the accretion of matter by a supermassive black hole at the center of its host galaxy. Not every supermassive black hole generates an AGN. For example, our Milky Way galaxy is not an active galaxy even though it has a supermassive black hole in its center.

Active galactic nuclei are the most luminous persistent sources of electromagnetic radiation in the universe and, as such, can be used as a means of discovering distant objects; their evolution as a function of cosmic time also puts constraints on models of the cosmos. The observed characteristics of an AGN depend on several properties such as the mass of the central black hole, the rate of gas accretion onto the black hole, the orientation of the accretion disk, the degree of obscuration of the nucleus by dust, and presence or absence of jets. Numerous subclasses of AGN have been defined on the basis of their observed characteristics; the most powerful AGN are classified as quasars. A blazar is an AGN with a jet pointed toward the Earth, in which radiation from the jet is enhanced by relativistic beaming.

↑ Return to Menu

Astrophysical jet in the context of Microquasar

A microquasar, a smaller version of a quasar, is a compact region surrounding a stellar black hole with a mass several times that of its companion star, observable in sufficient detail, in our own or nearby galaxy. The matter being pulled from the companion star forms an accretion disk around the black hole. This accretion disk may become so hot, due to friction, that it begins to emit X-rays. The disk also projects narrow streams or "jets" of subatomic particles at near-light speed, generating a strong radio wave emission.

↑ Return to Menu

Astrophysical jet in the context of Centaurus A

Centaurus A (also known as NGC 5128 or Caldwell 77) is a galaxy in the constellation of Centaurus. It was discovered in 1826 by Scottish astronomer James Dunlop from his home in Parramatta, in New South Wales, Australia. There is considerable debate in the literature regarding the galaxy's fundamental properties such as its Hubble type (lenticular galaxy or a giant elliptical galaxy) and distance (11–13 million light-years). It is the closest radio galaxy to Earth, as well as the closest BL Lac object, so its active galactic nucleus has been extensively studied by professional astronomers. The galaxy is also the fifth-brightest in the sky, making it an ideal amateur astronomy target. It is only visible from the southern hemisphere and low northern latitudes.

The center of the galaxy contains a supermassive black hole with a mass of 55 million solar masses, which ejects a relativistic jet that is responsible for emissions in the X-ray and radio wavelengths. By taking radio observations of the jet separated by a decade, astronomers have determined that the inner parts of the jet are moving at about half of the speed of light. X-rays are produced farther out as the jet collides with surrounding gases, resulting in the creation of highly energetic particles. The X-ray jets of Centaurus A are thousands of light-years long, while the radio jets are over a million light-years long.

↑ Return to Menu

Astrophysical jet in the context of NGC 383

NGC 383 is a double radio galaxy with a quasar-like appearance located in the constellation Pisces. It was discovered by German-British astronomer William Herschel on 12 September 1784. It is listed as Arp 331 in Halton Arp's Atlas of Peculiar Galaxies.

Recent discoveries by the National Radio Astronomy Observatory in 2006 reveal that NGC 383 is being bisected by high energy relativistic jets traveling at relatively high fractions of the speed of light. The relativistic electrons in the jets are detected as synchrotron radiation in the x-ray and radio wavelengths. The focus of this intense energy is the galactic center of NGC 383. The relativistic electron jets detected as synchrotron radiation extend for several thousand parsecs and then appear to dissipate at the ends in the form of streamers or filaments.

↑ Return to Menu