Astronomy


Astronomy
In this Dossier

Astronomy in the context of Zodiac constellation

The zodiac is a belt-shaped region of the sky that extends approximately 8° north and south celestial latitude of the ecliptic – the apparent path of the Sun across the celestial sphere over the course of the year. Within this zodiac belt appear the Moon and the brightest planets, along their orbital planes. The zodiac is divided along the ecliptic into 12 equal parts, called "signs", each occupying 30° of celestial longitude. These signs roughly correspond to the astronomical constellations with the following modern names: Aries, Taurus, Gemini, Cancer, Leo, Virgo, Libra, Scorpio, Sagittarius, Capricorn, Aquarius, and Pisces.

The signs have been used to determine the time of the year by identifying each sign with the days of the year the Sun is in the respective sign. In Western astrology, and formerly astronomy, the time of each sign is associated with different attributes. The zodiacal system and its angular measurement in 360 sexagesimal degree (°) originated with Babylonian astronomy during the 1st millennium BC, probably during the Achaemenid Empire. It was communicated into Greek astronomy by the 2nd century BC, as well as into developing the Hindu zodiac. Due to the precession of the equinoxes, the time of year that the Sun is in a given constellation has changed since Babylonian times, and the point of March equinox has moved from Aries into Pisces.

View the full Wikipedia page for Zodiac constellation
↑ Return to Menu

Astronomy in the context of Islamic astronomers

Medieval Islamic astronomy comprises the astronomical developments made in the Islamic world, particularly during the Islamic Golden Age (9th–13th centuries), and mostly written in the Arabic language. These developments mostly took place in the Middle East, Central Asia, Al-Andalus, and North Africa, and later in the Far East and India. It closely parallels the genesis of other Islamic sciences in its assimilation of foreign material and the amalgamation of the disparate elements of that material to create a science with Islamic characteristics. These included Greek, Sassanid, and Indian works in particular, which were translated and built upon.

Islamic astronomy played a significant role in the revival of ancient astronomy following the loss of knowledge during the early medieval period, notably with the production of Latin translations of Arabic works during the 12th century.

View the full Wikipedia page for Islamic astronomers
↑ Return to Menu

Astronomy in the context of Celestial bodies

An astronomical object, celestial object, stellar object or heavenly object is a naturally occurring physical entity, association, or structure that exists within the observable universe. In astronomy, the terms object and body are often used interchangeably. However, an astronomical body, celestial body or heavenly body is a single, tightly bound, contiguous physical object, while an astronomical or celestial object admits a more complex, less cohesively bound structure, which may consist of multiple bodies or even other objects with substructures.

Examples of astronomical objects include planetary systems, star clusters, nebulae, and galaxies, while asteroids, moons, planets, and stars are astronomical bodies. A comet may be identified as both a body and an object: It is a body when referring to the frozen nucleus of ice and dust, and an object when describing the entire comet with its diffuse coma and tail.

View the full Wikipedia page for Celestial bodies
↑ Return to Menu

Astronomy in the context of Angular distance

Angular distance or angular separation is the measure of the angle between the orientation of two straight lines, rays, or vectors in three-dimensional space, or the central angle subtended by the radii through two points on a sphere. When the rays are lines of sight from an observer to two points in space, it is known as the apparent distance or apparent separation.

Angular distance appears in mathematics (in particular geometry and trigonometry) and all natural sciences (e.g., kinematics, astronomy, and geophysics). In the classical mechanics of rotating objects, it appears alongside angular velocity, angular acceleration, angular momentum, moment of inertia and torque.

View the full Wikipedia page for Angular distance
↑ Return to Menu

Astronomy in the context of Spheres

A sphere (from Greek σφαῖρα, sphaîra) is a surface analogous to the circle, a curve. In solid geometry, a sphere is the set of points that are all at the same distance r from a given point in three-dimensional space. That given point is the center of the sphere, and the distance r is the sphere's radius. The earliest known mentions of spheres appear in the work of the ancient Greek mathematicians.

The sphere is a fundamental surface in many fields of mathematics. Spheres and nearly-spherical shapes also appear in nature and industry. Bubbles such as soap bubbles take a spherical shape in equilibrium. The Earth is often approximated as a sphere in geography, and the celestial sphere is an important concept in astronomy. Manufactured items including pressure vessels and most curved mirrors and lenses are based on spheres. Spheres roll smoothly in any direction, so most balls used in sports and toys are spherical, as are ball bearings.

View the full Wikipedia page for Spheres
↑ Return to Menu

Astronomy in the context of Origin of water on Earth

The origin of water on Earth is the subject of a body of research in the fields of planetary science, astronomy, and astrobiology. Earth is unique among the rocky planets in the Solar System in having oceans of liquid water on its surface. Liquid water, which is necessary for all known forms of life, continues to exist on the surface of Earth because the planet is at a far enough distance (known as the habitable zone) from the Sun that it does not lose its water, but not so far that low temperatures cause all water on the planet to freeze.

It was long thought that Earth's water did not originate from the planet's region of the protoplanetary disk. Instead, it was hypothesized water and other volatiles must have been delivered to Earth from the outer Solar System later in its history. Recent research, however, indicates that hydrogen inside the Earth played a role in the formation of the ocean. The two ideas are not mutually exclusive, as there is also evidence that water was delivered to Earth by impacts from icy planetesimals similar in composition to asteroids in the outer edges of the asteroid belt.

View the full Wikipedia page for Origin of water on Earth
↑ Return to Menu

Astronomy in the context of Seven liberal arts

Liberal arts education (from Latin liberalis 'free' and ars 'art or principled practice') is a traditional academic course in Western higher education, which traditionally covers the natural sciences, social sciences, arts, and humanities. Liberal arts takes the term art in the sense of a learned skill rather than specifically the fine arts. Liberal arts education can refer to studies in a liberal arts degree course or to a university education more generally. Such a course of study contrasts with those that are principally vocational, professional, or technical, as well as religiously based courses.

The term liberal arts for an educational curriculum dates back to classical antiquity in the West, but has changed its meaning considerably, mostly expanding it. The seven subjects in the ancient and medieval meaning came to be divided into the trivium of rhetoric, grammar, and logic, and the quadrivium of astronomy, arithmetic, geometry, and music. Liberal arts colleges and schools often have names such as arts and social sciences, arts and sciences and humanities. Liberal arts degrees from today's universities and colleges traditionally include the following disciplines: Anthropology, English, Literature, Fine arts, Foreign languages, Philosophy, Psychology, Sociology, Music, Journalism, Economics, Law, Communications, Architecture, Creative arts, Art, and History. Degrees in Liberal studies are often confused with those in a liberal arts discipline. Liberal studies refers to degrees with a broad curriculum, across multiple liberal arts disciplines and/or sciences and technologies.

View the full Wikipedia page for Seven liberal arts
↑ Return to Menu

Astronomy in the context of Quadrivium

From the time of Plato through the Middle Ages, the quadrivium (plural: quadrivia, Latin for "four ways") was a grouping of four subjects or arts—arithmetic, geometry, music, and astronomy—that formed a second curricular stage following preparatory work in the trivium, consisting of grammar, logic, and rhetoric. Together, the trivium and the quadrivium comprised the seven liberal arts, and formed the basis of a liberal arts education in Western society until gradually displaced as a curricular structure by the studia humanitatis and its later offshoots, beginning with Petrarch in the 14th century. The seven classical arts were considered "thinking skills" and were distinguished from practical arts, such as medicine and architecture.

The four mathematical arts were recognized by Pythagoreans such as Nicomachus of Gerasa, but the use of quadrivium as a term for these four subjects has been attributed to Boethius, when he affirmed that the height of philosophy can be attained only following "a sort of fourfold path" (quodam quasi quadruvio). It was considered the foundation for the study of philosophy (sometimes called the "liberal art par excellence") and theology. The quadrivium was the upper division of medieval educational provision in the liberal arts, which comprised arithmetic (absolute number), music (relative number), geometry (magnitude at rest), and astronomy (magnitude in motion).

View the full Wikipedia page for Quadrivium
↑ Return to Menu

Astronomy in the context of Renaissance science

During the Renaissance, great advances occurred in geography, astronomy, chemistry, physics, mathematics, manufacturing, anatomy and engineering. The collection of ancient scientific texts began in earnest at the start of the 15th century and continued up to the Fall of Constantinople in 1453, and the invention of printing allowed a faster propagation of new ideas. Nevertheless, some have seen the Renaissance, at least in its initial period, as one of scientific backwardness. Historians like George Sarton and Lynn Thorndike criticized how the Renaissance affected science, arguing that progress was slowed for some amount of time. Humanists favored human-centered subjects like politics and history over study of natural philosophy or applied mathematics. More recently, however, scholars have acknowledged the positive influence of the Renaissance on mathematics and science, pointing to factors like the rediscovery of lost or obscure texts and the increased emphasis on the study of language and the correct reading of texts.

Marie Boas Hall coined the term Scientific Renaissance to designate the early phase of the Scientific Revolution, 1450–1630. More recently, Peter Dear has argued for a two-phase model of early modern science: a Scientific Renaissance of the 15th and 16th centuries, focused on the restoration of the natural knowledge of the ancients; and a Scientific Revolution of the 17th century, when scientists shifted from recovery to innovation.

View the full Wikipedia page for Renaissance science
↑ Return to Menu