Astronomical survey in the context of Astrograph


Astronomical survey in the context of Astrograph

Astronomical survey Study page number 1 of 2

Play TriviaQuestions Online!

or

Skip to study material about Astronomical survey in the context of "Astrograph"


⭐ Core Definition: Astronomical survey

An astronomical survey is a general map or image of a region of the sky (or of the whole sky) that lacks a specific observational target. Alternatively, an astronomical survey may comprise a set of images, spectra, or other observations of objects that share a common type or feature. Surveys are often restricted to one band of the electromagnetic spectrum due to instrumental limitations, although multiwavelength surveys can be made by using multiple detectors, each sensitive to a different bandwidth.

Surveys have generally been performed as part of the production of an astronomical catalog. They may also search for transient astronomical events. They often use wide-field astrographs.

↓ Menu
HINT:

In this Dossier

Astronomical survey in the context of NGTS

24°36′57″S 70°23′28″W / 24.61583°S 70.39111°W / -24.61583; -70.39111

The Next-Generation Transit Survey (NGTS) is a ground-based robotic search for exoplanets. The facility is located at Paranal Observatory in the Atacama Desert in northern Chile, about 2 km from ESO's Very Large Telescope and 0.5 km from the VISTA Survey Telescope. Science operations began in early 2015. The astronomical survey is managed by a consortium of seven European universities and other academic institutions from Chile, Germany, Switzerland, and the United Kingdom. Prototypes of the array were tested in 2009 and 2010 on La Palma, and from 2012 to 2014 at Geneva Observatory.

View the full Wikipedia page for NGTS
↑ Return to Menu

Astronomical survey in the context of 2MASS

The Two Micron All-Sky Survey (2MASS) was an astronomical survey of the whole sky in infrared light. It took place between 1997 and 2001, in two different locations: at the U.S. Fred Lawrence Whipple Observatory on Mount Hopkins, Arizona, and at the Cerro Tololo Inter-American Observatory in Chile, each using a 1.3-meter telescope for the Northern and Southern Hemisphere, respectively. It was conducted in the short-wavelength infrared at three distinct frequency bands (J, H, and K) near 2 micrometres, from which the photometric survey with its HgCdTe detectors derives its name.

2MASS produced an astronomical catalog with over 300 million observed objects, including minor planets of the Solar System, brown dwarfs, low-mass stars, nebulae, star clusters and galaxies. In addition, 1 million objects were cataloged in the 2MASS Extended Source Catalog (2MASX). The cataloged objects are designated with a "2MASS" and "2MASX" prefix, respectively.

View the full Wikipedia page for 2MASS
↑ Return to Menu

Astronomical survey in the context of Wide-field Infrared Survey Explorer

Wide-field Infrared Survey Explorer (WISE, observatory code C51, Explorer 92 and MIDEX-6) was a NASA infrared astronomy space telescope in the Explorers Program launched in December 2009. WISE discovered thousands of minor planets and numerous star clusters. Its observations also supported the discovery of the first Y-type brown dwarf and Earth trojan asteroid.WISE performed an all-sky astronomical survey with images in 3.4, 4.6, 12 and 22 μm wavelength range bands, over ten months using a 40 cm (16 in) diameter infrared telescope in Earth orbit.

After its solid hydrogen coolant depleted, it was placed in hibernation mode in February 2011.In 2013, NASA reactivated the WISE telescope to search for near-Earth objects (NEO), such as comets and asteroids, that could collide with Earth.

View the full Wikipedia page for Wide-field Infrared Survey Explorer
↑ Return to Menu

Astronomical survey in the context of Space telescope

A space telescope (also known as space observatory) is a telescope in outer space used to observe astronomical objects. Suggested by Lyman Spitzer in 1946, the first operational telescopes were the American Orbiting Astronomical Observatory, OAO-2 launched in 1968, and the Soviet Orion 1 ultraviolet telescope aboard space station Salyut 1 in 1971. Space telescopes avoid several problems caused by the atmosphere, including the absorption or scattering of certain wavelengths of light, obstruction by clouds, and distortions due to atmospheric refraction such as twinkling. Space telescopes can also observe dim objects during the daytime, and they avoid light pollution which ground-based observatories encounter. They are divided into two types: Satellites which map the entire sky (astronomical survey), and satellites which focus on selected astronomical objects or parts of the sky and beyond. Space telescopes are distinct from Earth imaging satellites, which point toward Earth for satellite imaging, applied for weather analysis, espionage, and other types of information gathering.

View the full Wikipedia page for Space telescope
↑ Return to Menu

Astronomical survey in the context of Baryon acoustic oscillations

In cosmology, baryon acoustic oscillations (BAO) are fluctuations in the density of the visible baryonic matter (normal matter) of the universe, caused by acoustic density waves in the primordial plasma of the early universe. In the same way that supernovae provide a "standard candle" for astronomical observations, BAO matter clustering provides a "standard ruler" for length scale in cosmology. The length of this standard ruler is given by the maximum distance the acoustic waves could travel in the primordial plasma before the plasma cooled to the point where it became neutral atoms (the epoch of recombination), which stopped the expansion of the plasma density waves, "freezing" them into place. The length of this standard ruler (≈490 million light years in today's universe) can be measured by looking at the large scale structure of matter using astronomical surveys. BAO measurements help cosmologists understand more about the nature of dark energy (which causes the accelerating expansion of the universe) by constraining cosmological parameters.

View the full Wikipedia page for Baryon acoustic oscillations
↑ Return to Menu

Astronomical survey in the context of Dark Energy Spectroscopic Instrument

The Dark Energy Spectroscopic Instrument (DESI) is a scientific research instrument for conducting spectrographic astronomical surveys of distant galaxies. Its main components are a focal plane containing 5,000 fiber-positioning robots, and a bank of spectrographs which are fed by the fibers. The instrument enables an experiment to probe the expansion history of the universe and the mysterious physics of dark energy. The main DESI survey started in May 2021. DESI sits at an elevation of 6,880 feet (2,100 m), where it has been retrofitted onto the Mayall Telescope on top of Kitt Peak in the Sonoran Desert, which is located 55 miles (89 km) from Tucson, Arizona, US.

The instrument is operated by the Lawrence Berkeley National Laboratory under funding from the US Department of Energy's Office of Science. Construction of the instrument was principally funded by the US Department of Energy's Office of Science, and by other numerous sources including the US National Science Foundation, the UK Science and Technology Facilities Council, France's Alternative Energies and Atomic Energy Commission, Mexico's National Council of Science and Technology, Spain's Ministry of Science and Innovation, by the Gordon and Betty Moore Foundation, by the Heising-Simons Foundation, and by collaborating institutions worldwide.

View the full Wikipedia page for Dark Energy Spectroscopic Instrument
↑ Return to Menu

Astronomical survey in the context of Vera C. Rubin Observatory

The Vera C. Rubin Observatory, formerly the Large Synoptic Survey Telescope (LSST), is an astronomical observatory in Coquimbo Region, Chile. Its main task is to conduct an astronomical survey of the southern sky every few nights, creating a ten-year time-lapse record, termed the Legacy Survey of Space and Time (also abbreviated LSST). The observatory is located on the El Peñón peak of Cerro Pachón, a 2,682-meter-high (8,799 ft) mountain in northern Chile, alongside the existing Gemini South and Southern Astrophysical Research Telescopes. The base facility is located about 100 kilometres (62 miles) away from the observatory by road, in La Serena.

The observatory is named for Vera Rubin, an American astronomer who pioneered discoveries about galactic rotation rates. It is a joint initiative of the U.S. National Science Foundation (NSF) and the U.S. Department of Energy's (DOE) Office of Science and is operated jointly by NSF NOIRLab and SLAC National Accelerator Laboratory.

View the full Wikipedia page for Vera C. Rubin Observatory
↑ Return to Menu

Astronomical survey in the context of List of minor planet discoverers

This is a list of notable minor-planet discoverers credited by the Minor Planet Center with the discovery of one or several minor planets (such as near-Earth and main-belt asteroids, Jupiter trojans and distant objects). As of 22 October 2025, the discovery of over 800,000 numbered minor planets are credited to 2,186 astronomers, observatories, telescopes or surveys.

View the full Wikipedia page for List of minor planet discoverers
↑ Return to Menu

Astronomical survey in the context of Data science

Data science is an interdisciplinary academic field that uses statistics, scientific computing, scientific methods, processing, scientific visualization, algorithms and systems to extract or extrapolate knowledge from potentially noisy, structured, or unstructured data.

Data science also integrates domain knowledge from the underlying application domain (e.g., natural sciences, information technology, and medicine). Data science is multifaceted and can be described as a science, a research paradigm, a research method, a discipline, a workflow, and a profession.

View the full Wikipedia page for Data science
↑ Return to Menu

Astronomical survey in the context of Survey (disambiguation)

Survey may refer to:

View the full Wikipedia page for Survey (disambiguation)
↑ Return to Menu

Astronomical survey in the context of 2023 KQ14

2023 KQ14, informally nicknamed Ammonite, is a trans-Neptunian object (TNO) orbiting the Sun on an extremely wide elliptical orbit. It was discovered by the Subaru Telescope atop Mauna Kea on 16 May 2023, as part of an internationally led astronomical survey known as the "Formation of the Outer Solar System: an Icy Legacy" (FOSSIL) survey. 2023 KQ14 is unusual because the direction of its orbital apsides is not aligned with those of previously known TNOs with high-perihelion elliptical orbits (sometimes known as sednoids), which challenges the hypothesis that an unseen distant planet ("Planet Nine") could be aligning their orbits. 2023 KQ14 likely has a diameter between 220 and 380 km (140 and 240 mi).

View the full Wikipedia page for 2023 KQ14
↑ Return to Menu

Astronomical survey in the context of Pan-STARRS

The Panoramic Survey Telescope and Rapid Response System (Pan-STARRS1; obs. code: F51 and Pan-STARRS2 obs. code: F52) located at Haleakala Observatory, Hawaii, US, consists of astronomical cameras, telescopes and a computing facility that is surveying the sky for moving or variable objects on a continual basis, and also producing accurate astrometry and photometry of already-detected objects. In January 2019 the second Pan-STARRS data release was announced. At 1.6 petabytes, it is the largest volume of astronomical data ever released.

View the full Wikipedia page for Pan-STARRS
↑ Return to Menu

Astronomical survey in the context of IRAS

The Infrared Astronomical Satellite (Dutch: Infrarood Astronomische Satelliet) (IRAS) was the first space telescope to perform a survey of the entire night sky at infrared wavelengths. Launched on 25 January 1983, its mission lasted ten months. The telescope was a joint project of the United States (NASA), the Netherlands (NIVR), and the United Kingdom (SERC). Over 250,000 infrared sources were observed at 12, 25, 60, and 100 micrometer wavelengths.

Support for the processing and analysis of data from IRAS was contributed from the Infrared Processing and Analysis Center at the California Institute of Technology. Currently, the Infrared Science Archive at IPAC holds the IRAS archive.

View the full Wikipedia page for IRAS
↑ Return to Menu

Astronomical survey in the context of DECam

The Dark Energy Survey (DES) is an astronomical survey designed to constrain the properties of dark energy. It uses images taken in the near-ultraviolet, visible, and near-infrared to measure the expansion of the universe using Type Ia supernovae, baryon acoustic oscillations, the number of galaxy clusters, and weak gravitational lensing. The collaboration is composed of research institutions and universities from the United States, Australia, Brazil, the United Kingdom, Germany, Spain, and Switzerland. The collaboration is divided into several scientific working groups. The director of DES is Josh Frieman.

The DES began by developing and building Dark Energy Camera (DECam), an instrument designed specifically for the survey. This camera has a wide field of view and high sensitivity, particularly in the red part of the visible spectrum and in the near infrared. Observations were performed with DECam mounted on the 4-meter Víctor M. Blanco Telescope, located at the Cerro Tololo Inter-American Observatory (CTIO) in Chile. Observing sessions ran from 2013 to 2019; as of 2021 the DES collaboration has published results from the first three years of the survey.

View the full Wikipedia page for DECam
↑ Return to Menu

Astronomical survey in the context of Zwicky Transient Facility

The Zwicky Transient Facility (ZTF, obs. code: I41) is a wide-field sky astronomical survey using a new camera attached to the Samuel Oschin Telescope at Palomar Observatory in San Diego County, California, United States. Commissioned in 2018, it supersedes the (Intermediate) Palomar Transient Factory (2009–2017) that used the same observatory code. It is named after the Swiss astronomer Fritz Zwicky.

View the full Wikipedia page for Zwicky Transient Facility
↑ Return to Menu