Astrodynamics in the context of "Orbital plane (astronomy)"

Play Trivia Questions online!

or

Skip to study material about Astrodynamics in the context of "Orbital plane (astronomy)"

Ad spacer

⭐ Core Definition: Astrodynamics

Orbital mechanics or astrodynamics is the application of ballistics and celestial mechanics to rockets, satellites, and other spacecraft. The motion of these objects is usually calculated from Newton's laws of motion and the law of universal gravitation. Astrodynamics is a core discipline within space-mission design and control.

Celestial mechanics treats more broadly the orbital dynamics of systems under the influence of gravity, including both spacecraft and natural astronomical bodies such as star systems, planets, moons, and comets. Orbital mechanics focuses on spacecraft trajectories, including orbital maneuvers, orbital plane changes, and interplanetary transfers, and is used by mission planners to predict the results of propulsive maneuvers.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Astrodynamics in the context of Orbital eccentricity

In astrodynamics, the orbital eccentricity of an astronomical object is a dimensionless parameter that determines the amount by which its orbit around another body deviates from a perfect circle. A value of 0 is a circular orbit, values between 0 and 1 form an elliptic orbit, 1 is a parabolic (escape orbit or capture orbit), and greater than 1 is a hyperbola. The term derives its name from the parameters of conic sections, as every Kepler orbit is a conic section. It is normally used for the isolated two-body problem, but extensions exist for objects following a rosette orbit through the Galaxy.

↑ Return to Menu

Astrodynamics in the context of Elliptic orbit

In astrodynamics or celestial mechanics, an elliptical orbit or eccentric orbit is an orbit with an eccentricity of less than 1; this includes the special case of a circular orbit, with eccentricity equal to 0. Some orbits have been referred to as "elongated orbits" if the eccentricity is "high" but that is not an explanatory term. For the simple two body problem, all orbits are ellipses.

In a gravitational two-body problem, both bodies follow similar elliptical orbits with the same orbital period around their common barycenter. The relative position of one body with respect to the other also follows an elliptic orbit.

↑ Return to Menu

Astrodynamics in the context of Orbital station-keeping

In astrodynamics, orbital station-keeping is keeping a spacecraft at a fixed distance from another spacecraft or celestial body. It requires a series of orbital maneuvers made with thruster burns to keep the active craft in the same orbit as its target. For many low Earth orbit satellites, the effects of non-Keplerian forces, i.e. the deviations of the gravitational force of the Earth from that of a homogeneous sphere, gravitational forces from Sun/Moon, solar radiation pressure and air drag, must be counteracted.For spacecraft in a halo orbit around a Lagrange point, station-keeping is even more fundamental, as such an orbit is unstable; without an active control with thruster burns, the smallest deviation in position or velocity would result in the spacecraft leaving orbit completely.

↑ Return to Menu

Astrodynamics in the context of Circular orbit

A circular orbit is an orbit with a fixed distance around the barycenter; that is, in the shape of a circle.In this case, not only the distance, but also the speed, angular speed, potential and kinetic energy are constant. There is no periapsis or apoapsis. This orbit has no radial version.

Listed below is a circular orbit in astrodynamics or celestial mechanics under standard assumptions. Here the centripetal force is the gravitational force, and the axis mentioned above is the line through the center of the central mass perpendicular to the orbital plane.

↑ Return to Menu

Astrodynamics in the context of Escape orbit

In astrodynamics or celestial mechanics a parabolic trajectory is a Kepler orbit with the eccentricity (e) equal to 1 and is an unbound orbit that is exactly on the border between elliptical and hyperbolic. When moving away from the source it is called an escape orbit, otherwise a capture orbit. It is also sometimes referred to as a orbit (see Characteristic energy).

Under standard assumptions a body traveling along an escape orbit will coast along a parabolic trajectory to infinity, with velocity relative to the central body tending to zero, and therefore will never return. Parabolic trajectories are minimum-energy escape trajectories, separating positive-energy hyperbolic trajectories from negative-energy elliptic orbits.

↑ Return to Menu

Astrodynamics in the context of Gravity well

A sphere of influence (SOI) in astrodynamics and astronomy is the oblate spheroid-shaped region where a particular celestial body exerts the main gravitational influence on an orbiting object. This is usually used to describe the areas in the Solar System where planets dominate the orbits of surrounding objects such as moons, despite the presence of the much more massive but distant Sun.

In the patched conic approximation, used in estimating the trajectories of bodies moving between the neighbourhoods of different bodies using a two-body approximation, ellipses and hyperbolae, the SOI is taken as the boundary where the trajectory switches which mass field it is influenced by. It is not to be confused with the sphere of activity which extends well beyond the sphere of influence.

↑ Return to Menu

Astrodynamics in the context of Hyperbolic trajectory

In astrodynamics or celestial mechanics, a hyperbolic trajectory or hyperbolic orbit (from Newtonian theory: hyperbola shape) is the trajectory of any object around a central body with enough velocity to escape the central object's gravitational field; expressed as orbital eccentricity designated by any number more than 1.

Under simplistic assumptions a body traveling along this trajectory will coast towards infinity, settling to a final excess velocity relative to the central body. As with parabolic trajectories, all hyperbolic trajectories are also escape trajectories. The specific energy of a hyperbolic trajectory orbit is positive.

↑ Return to Menu

Astrodynamics in the context of Orbiting body

In astrodynamics, an orbiting body is any physical body that orbits a more massive one, called the primary body. The orbiting body is properly referred to as the secondary body (), which is less massive than the primary body ().

Thus, or .

↑ Return to Menu