Artificial neural network in the context of "Stephen Kleene"

Play Trivia Questions online!

or

Skip to study material about Artificial neural network in the context of "Stephen Kleene"




⭐ Core Definition: Artificial neural network

In machine learning, a neural network or neural net (NN), also called artificial neural network (ANN), is a computational model inspired by the structure and functions of biological neural networks.

A neural network consists of connected units or nodes called artificial neurons, which loosely model the neurons in the brain. Artificial neuron models that mimic biological neurons more closely have also been recently investigated and shown to significantly improve performance. These are connected by edges, which model the synapses in the brain. Each artificial neuron receives signals from connected neurons, then processes them and sends a signal to other connected neurons. The "signal" is a real number, and the output of each neuron is computed by some non-linear function of the totality of its inputs, called the activation function. The strength of the signal at each connection is determined by a weight, which adjusts during the learning process.

↓ Menu

In this Dossier

Artificial neural network in the context of Whispering

Whispering is an unvoiced mode of phonation in which the vocal cords are abducted so that they do not vibrate; air passes between the arytenoid cartilages to create audible turbulence during speech. Supralaryngeal articulation remains the same as in normal speech.

In normal speech, the vocal cords alternate between states of voice and voicelessness. In whispering, only the voicing segments change, so that the vocal cords alternate between whisper and voicelessness (though the acoustic difference between the two states is minimal). Because of this, implementing speech recognition for whispered speech is more difficult, as the characteristic spectral range needed to detect syllables and words is not given through the total absence of tone. More advanced techniques such as neural networks may be used, however, as is done by Amazon Alexa.

↑ Return to Menu

Artificial neural network in the context of Neural circuit

A neural circuit is a population of neurons interconnected by synapses to carry out a specific function when activated. Multiple neural circuits interconnect with one another to form large scale brain networks.

Neural circuits have inspired the design of artificial neural networks, though there are significant differences.

↑ Return to Menu

Artificial neural network in the context of Image analysis

Image analysis or imagery analysis is the extraction of meaningful information from images; mainly from digital images by means of digital image processing techniques. Image analysis tasks can be as simple as reading bar coded tags or as sophisticated as identifying a person from their face.

Computers are indispensable for the analysis of large amounts of data, for tasks that require complex computation, or for the extraction of quantitative information. On the other hand, the human visual cortex is an excellent image analysis apparatus, especially for extracting higher-level information, and for many applications — including medicine, security, and remote sensing — human analysts still cannot be replaced by computers. For this reason, many important image analysis tools such as edge detectors and neural networks are inspired by human visual perception models.

↑ Return to Menu

Artificial neural network in the context of Neural network (biology)

A neural network, also called a neuronal network, is an interconnected population of neurons (typically containing multiple neural circuits). Biological neural networks are studied to understand the organization and functioning of nervous systems.

Closely related are artificial neural networks, machine learning models inspired by biological neural networks. They consist of artificial neurons, which are mathematical functions that are designed to be analogous to the mechanisms used by neural circuits.

↑ Return to Menu

Artificial neural network in the context of Inference engine

In the field of artificial intelligence, an inference engine is a software component of an intelligent system that applies logical rules to the knowledge base to deduce new information. The first inference engines were components of expert systems. The typical expert system consisted of a knowledge base and an inference engine. The knowledge base stored facts about the world. The inference engine applied logical rules to the knowledge base and deduced new knowledge. This process would iterate as each new fact in the knowledge base could trigger additional rules in the inference engine. Inference engines work primarily in one of two modes either special rule or facts: forward chaining and backward chaining. Forward chaining starts with the known facts and asserts new facts. Backward chaining starts with goals, and works backward to determine what facts must be asserted so that the goals can be achieved.

Additionally, the concept of 'inference' has expanded to include the process through which trained neural networks generate predictions or decisions. In this context, an 'inference engine' could refer to the specific part of the system, or even the hardware, that executes these operations. This type of inference plays a crucial role in various applications, including (but not limited to) image recognition, natural language processing, and autonomous vehicles. The inference phase in these applications is typically characterized by a high volume of data inputs and real-time processing requirements.

↑ Return to Menu

Artificial neural network in the context of Transformer (machine learning model)

In deep learning, the transformer is an artificial neural network architecture based on the multi-head attention mechanism, in which text is converted to numerical representations called tokens, and each token is converted into a vector via lookup from a word embedding table. At each layer, each token is then contextualized within the scope of the context window with other (unmasked) tokens via a parallel multi-head attention mechanism, allowing the signal for key tokens to be amplified and less important tokens to be diminished.

Transformers have the advantage of having no recurrent units, therefore requiring less training time than earlier recurrent neural architectures (RNNs) such as long short-term memory (LSTM). Later variations have been widely adopted for training large language models (LLMs) on large (language) datasets.

↑ Return to Menu

Artificial neural network in the context of Deep belief network

In machine learning, a deep belief network (DBN) is a generative graphical model, or alternatively a class of deep neural network, composed of multiple layers of latent variables ("hidden units"), with connections between the layers but not between units within each layer.

When trained without supervision on a set of examples, a DBN can learn to probabilistically reconstruct its inputs. The layers then act as feature detectors. After this learning step, a DBN can be further trained with supervision to perform classification.

↑ Return to Menu

Artificial neural network in the context of Connectionism

Connectionism is an approach to the study of human mental processes and cognition that utilizes mathematical models known as connectionist networks or artificial neural networks.

Connectionism has had many "waves" since its beginnings. The first wave appeared 1943 with Warren Sturgis McCulloch and Walter Pitts both focusing on comprehending neural circuitry through a formal and mathematical approach, and Frank Rosenblatt who published the 1958 paper "The Perceptron: A Probabilistic Model For Information Storage and Organization in the Brain" in Psychological Review, while working at the Cornell Aeronautical Laboratory. The first wave ended with the 1969 book about the limitations of the original perceptron idea, written by Marvin Minsky and Seymour Papert, which contributed to discouraging major funding agencies in the US from investing in connectionist research. With a few noteworthy deviations, most connectionist research entered a period of inactivity until the mid-1980s. The term connectionist model was reintroduced in a 1982 paper in the journal Cognitive Science by Jerome Feldman and Dana Ballard.

↑ Return to Menu