Arcsecond in the context of Parsecs


Arcsecond in the context of Parsecs

Arcsecond Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Arcsecond in the context of "Parsecs"


⭐ Core Definition: Arcsecond

A minute of arc, arcminute (abbreviated as arcmin), arc minute, or minute arc, denoted by the symbol , is a unit of angular measurement equal to 1/60 of a degree. Since one degree is 1/360 of a turn, or complete rotation, one arcminute is 1/21600 of a turn. The nautical mile (nmi) was originally defined as the arc length of a minute of latitude on a spherical Earth, so the actual Earth's circumference is very near 21600 nmi. A minute of arc is π/10800 of a radian.

A second of arc, arcsecond (abbreviated as arcsec), or arc second, denoted by the symbol , is a unit of angular measurement equal to 1/60 of a minute of arc, 1/3600 of a degree, 1/1296000 of a turn, and π/648000 (about 1/206264.8) of a radian.

↓ Menu
HINT:

In this Dossier

Arcsecond in the context of Parsec

The parsec (symbol: pc) is a unit of length used to measure the large distances to astronomical objects outside the Solar System, approximately equal to 3.26 light-years or 206,265 astronomical units (AU), i.e. 30.9 trillion kilometres (19.2 trillion miles). The parsec unit is obtained by the use of parallax and trigonometry, and is defined as the distance at which 1 AU subtends an angle of one arcsecond (1/3600 of a degree). The nearest star, Proxima Centauri, is about 1.3 parsecs (4.2 light-years) from the Sun: from that distance, the gap between the Earth and the Sun spans slightly less than one arcsecond. Most stars visible to the naked eye are within a few hundred parsecs of the Sun, with the most distant at a few thousand parsecs, and the Andromeda Galaxy at over 700,000 parsecs.

The word parsec is a shortened form of a distance corresponding to a parallax of one second, coined by the British astronomer Herbert Hall Turner in 1913. The unit was introduced to simplify the calculation of astronomical distances from raw observational data. Partly for this reason, it is the unit preferred in astronomy and astrophysics, though in popular science texts and common usage the light-year remains prominent. Although parsecs are used for the shorter distances within the Milky Way, multiples of parsecs are required for the larger scales in the universe, including kiloparsecs (kpc) for the more distant objects within and around the Milky Way, megaparsecs (Mpc) for mid-distance galaxies, and gigaparsecs (Gpc) for many quasars and the most distant galaxies.

View the full Wikipedia page for Parsec
↑ Return to Menu

Arcsecond in the context of IERS Reference Meridian

The IERS Reference Meridian (IRM), also called the International Reference Meridian, is the prime meridian (0° longitude) maintained by the International Earth Rotation and Reference Systems Service (IERS). It passes about 5.3 arcseconds east of George Biddell Airy's 1851 transit circle, and thus it differs slightly from the historical Greenwich Meridian. At the latitude of the Royal Observatory, Greenwich the difference is 102 metres (335 ft).

It is the reference meridian of the Global Positioning System (GPS) operated by the United States Space Force, and of WGS 84 and its two formal versions, the ideal International Terrestrial Reference System (ITRS) and its realization, the International Terrestrial Reference Frame (ITRF).

View the full Wikipedia page for IERS Reference Meridian
↑ Return to Menu

Arcsecond in the context of Metric unit

The metric system is a system of measurement that standardises a set of base units and a nomenclature for describing relatively large and small quantities via decimal-based multiplicative unit prefixes. Though the rules governing the metric system have changed over time, the modern definition, the International System of Units (SI), defines the metric prefixes and seven base units: metre (m), kilogram (kg), second (s), ampere (A), kelvin (K), mole (mol), and candela (cd).

An SI derived unit is a named combination of base units such as hertz (cycles per second), newton (kg⋅m/s), and tesla (1 kg⋅s⋅A) and in the case of Celsius a shifted scale from Kelvin. Certain units have been officially accepted for use with the SI. Some of these are decimalised, like the litre and electronvolt, and are considered "metric". Others, like the astronomical unit are not. Ancient non-metric but SI-accepted multiples of time, minute and hour, are base 60 (sexagesimal). Similarly, the angular measure degree and submultiples, arcminute, and arcsecond, are also sexagesimal and SI-accepted.

View the full Wikipedia page for Metric unit
↑ Return to Menu

Arcsecond in the context of Shuttle Radar Topography Mission

The Shuttle Radar Topography Mission (SRTM) is an international research effort that obtained digital elevation models on a near-global scale from 56°S to 60°N, to generate the most complete high-resolution digital topographic database of Earth prior to the release of the ASTER GDEM in 2009. SRTM consisted of a specially modified radar system that flew on board the Space Shuttle Endeavour during the 11-day STS-99 mission in February 2000. The radar system was based on the older Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR), previously used on the Shuttle in 1994. To acquire topographic data, the SRTM payload was outfitted with two radar antennas. One antenna was located in the Shuttle's payload bay, the other – a critical change from the SIR-C/X-SAR, allowing single-pass interferometry – on the end of a 60-meter (200-foot) mast that extended from the payload bay once the Shuttle was in space. The technique employed is known as interferometric synthetic aperture radar. Intermap Technologies was the prime contractor for processing the interferometric synthetic aperture radar data.

The elevation models are arranged into tiles, each covering one degree of latitude and one degree of longitude, named according to their south western corners. For example, "n45e006" stretches from 45°N 6°E to 46°N 7°E and "s45w006" from 45°S 6°W to 44°S 5°W. The resolution of the raw data is one arcsecond (30 m along the equator) and coverage includes Africa, Europe, North America, South America, Asia, and Australia. A derived one arcsecond dataset with trees and other non-terrain features removed covering Australia was made available in November 2011; the raw data are restricted for government use. For the rest of the world, only three arcsecond (90 m along the equator) data are available. Each one arcsecond tile has 3,601 rows, each consisting of 3,601 16 bit bigendian cells. The dimensions of the three arcsecond tiles are 1201 x 1201. The original SRTM elevations were calculated relative to the WGS84 ellipsoid and then the EGM96 geoid separation values were added to convert to heights relative to the geoid for all the released products.

View the full Wikipedia page for Shuttle Radar Topography Mission
↑ Return to Menu

Arcsecond in the context of Stellar parallax

Stellar parallax is the apparent shift of position (parallax) of any nearby star (or other object) against the background of distant stars. By extension, it is a method for determining the distance to the star through trigonometry, the stellar parallax method. Created by the different orbital positions of Earth, the extremely small observed shift is largest at time intervals of about six months, when Earth arrives at opposite sides of the Sun in its orbit, giving a baseline (the shortest side of the triangle made by a star to be observed and two positions of Earth) distance of about two astronomical units between observations. The parallax itself is considered to be half of this maximum, about equivalent to the observational shift that would occur due to the different positions of Earth and the Sun, a baseline of one astronomical unit (AU).

Stellar parallax is so difficult to detect that its existence was the subject of much debate in astronomy for hundreds of years. Thomas Henderson, Friedrich Georg Wilhelm von Struve, and Friedrich Bessel made the first successful parallax measurements in 1832–1838, for the stars Alpha Centauri, Vega, and 61 Cygni.

View the full Wikipedia page for Stellar parallax
↑ Return to Menu

Arcsecond in the context of Proper motion

Proper motion is the angular speed of a celestial object, such as a star, as it moves across the sky. It is an astrometric measure, giving an object's change in angular position over time relative to the center of mass of the Solar System. This parameter is measured relative to the distant stars or a stable reference such as the International Celestial Reference Frame (ICRF). Patterns in proper motion reveal larger structures like stellar streams, the general rotation of the Milky Way disk, and the random motions of stars in the Galactic halo.

The components for proper motion in the equatorial coordinate system (of a given epoch, often J2000.0) are given in the direction of right ascension (μα) and of declination (μδ). Their combined value is computed as the total proper motion (μ). It has dimensions of angle per time, typically arcseconds per year or milliarcseconds per year.

View the full Wikipedia page for Proper motion
↑ Return to Menu

Arcsecond in the context of NIRCam

NIRCam (Near-InfraRed Camera) is an instrument aboard the James Webb Space Telescope. It has two major tasks, as an imager from 0.6 to 5 μm wavelength, and as a wavefront sensor to keep the 18-section mirrors functioning as one. In other words, it is a camera and is also used to provide information to align the 18 segments of the primary mirror. It is an infrared camera with ten mercury-cadmium-telluride (HgCdTe) detector arrays, and each array has an array of 2048×2048 pixels. The camera has a field of view of 2.2×2.2 arcminutes with an angular resolution of 0.07 arcseconds at 2 μm. NIRCam is also equipped with coronagraphs, which helps to collect data on exoplanets near stars. It helps with imaging anything next to a much brighter object, because the coronagraph blocks that light.

NIRCam is housed in the Integrated Science Instrument Module (ISIM). It is connected to the ISIM mechanically with a system of kinematic mounts in the structural form of struts. There are thermal straps connecting the NIRCam optical bench assembly to theISIM structure and to thermal radiators. It is designed to operate between 32 K (−241.2 °C; −402.1 °F) and 37 K (−236.2 °C; −393.1 °F). The Focal Plane Electronics operate at 290 K.

View the full Wikipedia page for NIRCam
↑ Return to Menu

Arcsecond in the context of Megaparsecs

The parsec (symbol: pc) is a unit of length used to measure the large distances to astronomical objects outside the Solar System, approximately equal to 3.26 light-years or 206,265 astronomical units (AU), i.e. 30.9 trillion kilometres (19.2 trillion miles). The parsec unit is obtained by the use of parallax and trigonometry, and is defined as the distance at which 1 AU subtends an angle of one arcsecond (1/3600 of a degree). The nearest star, Proxima Centauri, is about 1.3 parsecs (4.2 light-years) from the Sun: from that distance, the gap between the Earth and the Sun spans slightly less than one arcsecond. Most stars visible to the naked eye are within a few hundred parsecs of the Sun, with the most distant at a few thousand parsecs, and the Andromeda Galaxy at over 700,000 parsecs.

The word parsec is a shortened form of a distance corresponding to a parallax of one arcsecond, coined by the British astronomer Herbert Hall Turner in 1913. The unit was introduced to simplify the calculation of astronomical distances from raw observational data. Partly for this reason, it is the unit preferred in astronomy and astrophysics, though in popular science texts and common usage the light-year remains prominent. Although parsecs are used for the shorter distances within the Milky Way, multiples of parsecs are required for the larger scales in the universe, including kiloparsecs (kpc) for the more distant objects within and around the Milky Way, megaparsecs (Mpc) for mid-distance galaxies, and gigaparsecs (Gpc) for many quasars and the most distant galaxies.

View the full Wikipedia page for Megaparsecs
↑ Return to Menu

Arcsecond in the context of Nu Serpentis

ν Serpentis, Latinized as Nu Serpentis, is a solitary star in the Serpens Cauda section of the equatorial constellation of Serpens. It is a white-hued star that is faintly visible to the naked eye with an apparent visual magnitude of 4.32. Based upon an annual parallax shift of 16.05 mas as seen from the Sun, it is about 203 light years from the Sun. The star is drifting further away with a radial velocity of +5 km/s.

This is an A-type main-sequence star with a stellar classification of A2V, and is generating energy through hydrogen fusion at its core. It is 350 million years old with a high rate of spin, showing a projected rotational velocity of 123 km/s. The star has 2.64 times the mass of the Sun and 3.0 times the Sun's radius. It is radiating 76 times the Sun's luminosity from its photosphere at an effective temperature of 9,120 K. Nu Serpentis has an optical companion, a magnitude +9.4 star at an angular separation of 46 arcseconds.

View the full Wikipedia page for Nu Serpentis
↑ Return to Menu

Arcsecond in the context of HR 4796

HR 4796 is a binary star system in the southern constellation of Centaurus. Parallax measurements put it at a distance of 235 light-years (72 parsecs) from the Earth. The two components of this system have an angular separation of 7.7 arcseconds, which, at their estimated distance, is equivalent to a projected separation of about 560 Astronomical Units (AU), or 560 times the separation of the Earth from the Sun. The star and its ring resemble an eye, and it is sometimes known by the nickname "Sauron's Eye".

View the full Wikipedia page for HR 4796
↑ Return to Menu