Exogenous in the context of "Neurotoxin"

⭐ In the context of neurotoxins, exogenous compounds are considered to be…

Ad spacer

⭐ Core Definition: Exogenous

In a variety of contexts, exogeny or exogeneity (from Greek ἔξω éxō 'outside' and -γένεια -géneia 'to produce') is the fact of an action or object originating externally. It is the opposite of endogeneity or endogeny, the fact of being influenced from within a system.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Exogenous in the context of Neurotoxin

Neurotoxins are toxins that are destructive to nerve tissue (causing neurotoxicity). Neurotoxins are an extensive class of exogenous chemical neurological insults that can adversely affect function in both developing and mature nervous tissue. The term can also be used to classify endogenous compounds, which, when abnormally contacted, can prove neurologically toxic. Though neurotoxins are often neurologically destructive, their ability to specifically target neural components is important in the study of nervous systems. Common examples of neurotoxins include lead, ethanol (drinking alcohol), glutamate, nitric oxide, botulinum toxin (e.g. Botox), tetanus toxin, and tetrodotoxin. Some substances such as nitric oxide and glutamate are in fact essential for proper function of the body and only exert neurotoxic effects at excessive concentrations.

Neurotoxins inhibit neuron control over ion concentrations across the cell membrane, or communication between neurons across a synapse. Local pathology of neurotoxin exposure often includes neuron excitotoxicity or apoptosis but can also include glial cell damage. Macroscopic manifestations of neurotoxin exposure can include widespread central nervous system damage such as intellectual disability, persistent memory impairments, epilepsy, and dementia. Additionally, neurotoxin-mediated peripheral nervous system damage such as neuropathy or myopathy is common. Support has been shown for a number of treatments aimed at attenuating neurotoxin-mediated injury, such as antioxidant and antitoxin administration.

↓ Explore More Topics
In this Dossier

Exogenous in the context of Denudation

Denudation is the geological process in which moving water, ice, wind, and waves erode the Earth's surface, leading to a reduction in elevation and in relief of landforms and landscapes. Although the terms erosion and denudation are used interchangeably, erosion is the transport of soil and rocks from one location to another, and denudation is the sum of processes, including erosion, that result in the lowering of Earth's surface. Endogenous processes such as volcanoes, earthquakes, and tectonic uplift can expose continental crust to the exogenous processes of weathering, erosion, and mass wasting. The effects of denudation have been recorded for millennia but the mechanics behind it have been debated for the past 200 years and have only begun to be understood in the past few decades.

↑ Return to Menu

Exogenous in the context of Blood serum

Serum (/ˈsɪərəm/) is the fluid and solvent component of blood which does not play a role in clotting. It may be defined as blood plasma without the clotting factors, or as blood with all cells and clotting factors removed. Serum contains all proteins except clotting factors (involved in blood clotting), including all electrolytes, antibodies, antigens, hormones; and any exogenous substances (e.g., drugs, microorganisms). Serum also does not contain all the formed elements of blood, which include blood cells, white blood cells (leukocytes, lymphocytes), red blood cells (erythrocytes), and platelets.

The study of serum is serology. Serum is used in numerous diagnostic tests as well as blood typing. Measuring the concentration of various molecules can be useful for many applications, such as determining the therapeutic index of a drug candidate in a clinical trial.

↑ Return to Menu

Exogenous in the context of Activity-dependent plasticity

Activity-dependent plasticity is a form of functional and structural neuroplasticity that arises from the use of cognitive functions and personal experience. Hence, it is the biological basis for learning and the formation of new memories. Activity-dependent plasticity is a form of neuroplasticity that arises from intrinsic or endogenous activity, as opposed to forms of neuroplasticity that arise from extrinsic or exogenous factors, such as electrical brain stimulation- or drug-induced neuroplasticity. The brain's ability to remodel itself forms the basis of the brain's capacity to retain memories, improve motor function, and enhance comprehension and speech amongst other things. It is this trait to retain and form memories that is associated with neural plasticity and therefore many of the functions individuals perform on a daily basis. This plasticity occurs as a result of changes in gene expression which are triggered by signaling cascades that are activated by various signaling molecules (e.g., calcium, dopamine, and glutamate, among many others) during increased neuronal activity.

The brain's ability to adapt toward active functions allows humans to specialize in specific processes based on relative use and activity. For example, a right-handed person may perform any movement poorly with their left hand but continuous practice with the non-dominant hand can cause one to become ambidextrous.

↑ Return to Menu