A set of prototiles is aperiodic if copies of the prototiles can be assembled to create tilings, such that all possible tessellation patterns are non-periodic. The aperiodicity referred to is a property of the particular set of prototiles; the various resulting tilings themselves are just non-periodic.
A given set of tiles, in the Euclidean plane or some other geometric setting, admits a tiling if non-overlapping copies of the tiles in the set can be fitted together to cover the entire space. A given set of tiles might admit periodic tilings — that is, tilings that remain invariant after being shifted by a translation (for example, a lattice of square tiles is periodic). It is not difficult to design a set of tiles that admits non-periodic tilings as well as periodic tilings. (For example, randomly arranged tilings using a 2×2 square and 2×1 rectangle are typically non-periodic.)