Animal cell in the context of "Protein synthesis"

Play Trivia Questions online!

or

Skip to study material about Animal cell in the context of "Protein synthesis"

Ad spacer

⭐ Core Definition: Animal cell

The cell is the basic structural and functional unit of all forms of life or organisms. The term comes from the Latin word cellula meaning 'small room'. A biological cell basically consists of a semipermeable cell membrane enclosing cytoplasm that contains genetic material. Most cells are only visible under a microscope. Except for highly-differentiated cell types (examples include red blood cells and gametes) most cells are capable of replication, and protein synthesis. Some types of cell are motile. Cells emerged on Earth about four billion years ago.

All organisms are grouped into prokaryotes, and eukaryotes. Prokaryotes are single-celled, and include archaea, and bacteria. Eukaryotes can be single-celled or multicellular, and include protists, plants, animals, most types of fungi, and some species of algae. All multicellular organisms are made up of many different types of cell. The diploid cells that make up the body of a plant or animal are known as somatic cells, and in animals excludes the haploid gametes.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Animal cell in the context of Cell physiology

Cell physiology is the biological study of the activities that take place in a cell to keep it alive. The term physiology refers to normal functions in a living organism. Animal cells, plant cells and microorganism cells show similarities in their functions even though they vary in structure.

↑ Return to Menu

Animal cell in the context of Rubidium

Rubidium is a chemical element; it has symbol Rb and atomic number 37. It is a very soft, whitish-grey solid in the alkali metal group, similar to potassium and caesium. Rubidium is the first alkali metal in the group to have a density higher than water. On Earth, natural rubidium comprises two isotopes: 72% is a stable isotope Rb, and 28% is slightly radioactive Rb, with a half-life of 48.8 billion years – more than three times as long as the estimated age of the universe.

German chemists Robert Bunsen and Gustav Kirchhoff discovered rubidium in 1861 by the newly developed technique, flame spectroscopy. The name comes from the Latin word rubidus, meaning deep red, the color of its emission spectrum. Rubidium's compounds have various chemical and electronic applications. Rubidium metal is easily vaporized and has a convenient spectral absorption range, making it a frequent target for laser manipulation of atoms. Rubidium is not a known nutrient for any living organisms. However, rubidium ions have similar properties and the same charge as potassium ions, and are actively taken up and treated by animal cells in similar ways.

↑ Return to Menu

Animal cell in the context of Action potential

An action potential (also known as a nerve impulse or "spike" when in a neuron) is a series of quick changes in voltage across a cell membrane. An action potential occurs when the membrane potential of a specific cell rapidly rises and falls. This "depolarization" (physically, a reversal of the polarization of the membrane) then causes adjacent locations to similarly depolarize. Action potentials occur in several types of excitable cells, which include animal cells like neurons and muscle cells, as well as some plant cells. Certain endocrine cells such as pancreatic beta cells, and certain cells of the anterior pituitary gland are also excitable cells.

In neurons, action potentials play a central role in cell–cell communication by providing for—or with regard to saltatory conduction, assisting—the propagation of signals along the neuron's axon toward synaptic boutons situated at the ends of an axon; these signals can then connect with other neurons at synapses, or to motor cells or glands. In other types of cells, their main function is to activate intracellular processes. In muscle cells, for example, an action potential is the first step in the chain of events leading to contraction. In beta cells of the pancreas, they provoke release of insulin. The temporal sequence of action potentials generated by a neuron is called its "spike train". A neuron that emits an action potential, or nerve impulse, is often said to "fire".

↑ Return to Menu

Animal cell in the context of Extracellular matrix

In biology, the extracellular matrix (ECM), also called the intercellular matrix, is a network consisting of extracellular macromolecules and minerals, such as collagen, enzymes, glycoproteins and hydroxyapatite that provide structural and biochemical support to surrounding cells. Because multicellularity evolved independently in different multicellular lineages, the composition of ECM varies between multicellular structures; however, cell adhesion, cell-to-cell communication and differentiation are common functions of the ECM.

The animal extracellular matrix includes the interstitial matrix and the basement membrane. Interstitial matrix is present in the intercellular spaces between various animal cells. Gels of polysaccharides and fibrous proteins fill the interstitial space and act as a compression buffer against the stress placed on the ECM. Basement membranes are sheet-like depositions of ECM on which various epithelial cells rest. Each type of connective tissue in animals has a type of ECM: collagen fibers and bone mineral comprise the ECM of bone tissue; reticular fibers and ground substance comprise the ECM of loose connective tissue; and blood plasma is the ECM of blood.

↑ Return to Menu

Animal cell in the context of Lysosome

A lysosome (/ˈlaɪsəˌsoʊm/) is a membrane-bound organelle that is found in all animal cells, (except red blood cells), and rarely in plant cells. There are normally hundreds of lysosomes in the cytosol, where they function as the cell's degradation center. Their primary responsibility is catabolic degradation of proteins, polysaccharides and lipids into their respective building-block molecules: amino acids, monosaccharides, and free fatty acids. The breakdown is done by various enzymes, for example proteases, glycosidases and lipases.

With an acidic lumen limited by a single-bilayer lipid membrane, the lysosome holds an environment isolated from the rest of the cell. The lower pH creates optimal conditions for the over 60 different hydrolases inside.

↑ Return to Menu

Animal cell in the context of Centrosome

The centrosome (Latin centrum 'centre' + Greek sōma 'body') (archaically cytocentre) is a non-membrane bounded organelle in the animal cell that serves as the main microtubule organizing centre (MTOC) and a regulator of cell-cycle progression. The centrosome provides structure for the cell. It is thought to have evolved only in the metazoan lineage of eukaryotic cells. Fungi and plants lack centrosomes and therefore use other structures to organize their microtubules. Although the centrosome has a key role in efficient mitosis in animal cells, it is not essential in certain fly and flatworm species.

In non-rodent mammals the sperm contributes the major part of the centrosome, the centrioles. Centrosomes are composed of two centrioles arranged at right angles to each other, and surrounded by a dense, highly structured mass of proteins termed the pericentriolar material (PCM). The PCM contains proteins responsible for microtubule nucleation and anchoring — including γ-tubulin, pericentrin and ninein. In general, each centriole of the centrosome is based on a nine-triplet microtubule assembled in a cartwheel structure, and contains centrin, cenexin and tektin.In many cell types, the centrosome is replaced by a cilium during cellular differentiation. However, once the cell starts to divide, the cilium is replaced again by the centrosome.

↑ Return to Menu