Angle brackets in the context of Inner product space


Angle brackets in the context of Inner product space

Angle brackets Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Angle brackets in the context of "Inner product space"


⭐ Core Definition: Angle brackets

A bracket is either of two tall fore- or back-facing punctuation marks commonly used to isolate a segment of text or data from its surroundings. They come in four main pairs of shapes, as given in the box to the right, which also gives their names, that vary between British and American English. "Brackets", without further qualification, are in British English the (...) marks and in American English the [...] marks.

↓ Menu
HINT:

In this Dossier

Angle brackets in the context of Bracket (mathematics)

In mathematics, brackets of various typographical forms, such as parentheses ( ), square brackets [ ], braces { } and angle brackets ⟨ ⟩, are frequently used in mathematical notation. Generally, such bracketing denotes some form of grouping: in evaluating an expression containing a bracketed sub-expression, the operators in the sub-expression take precedence over those surrounding it. Sometimes, for the clarity of reading, different kinds of brackets are used to express the same meaning of precedence in a single expression with deep nesting of sub-expressions.

Historically, other notations, such as the vinculum, were similarly used for grouping. In present-day use, these notations all have specific meanings. The earliest use of brackets to indicate aggregation (i.e. grouping) was suggested in 1608 by Christopher Clavius, and in 1629 by Albert Girard.

View the full Wikipedia page for Bracket (mathematics)
↑ Return to Menu

Angle brackets in the context of Orthogonal vectors

In mathematics, an inner product space is a real or complex vector space endowed with an operation called an inner product. The inner product of two vectors in the space is a scalar, often denoted with angle brackets such as in . Inner products allow formal definitions of intuitive geometric notions, such as lengths, angles, and orthogonality (zero inner product) of vectors. Inner product spaces generalize Euclidean vector spaces, in which the inner product is the dot product or scalar product of Cartesian coordinates. Inner product spaces of infinite dimensions are widely used in functional analysis. Inner product spaces over the field of complex numbers are sometimes referred to as unitary spaces. The first usage of the concept of a vector space with an inner product is due to Giuseppe Peano, in 1898.

An inner product naturally induces an associated norm, (denoted and in the picture); so, every inner product space is a normed vector space. If this normed space is also complete (that is, a Banach space) then the inner product space is a Hilbert space. If an inner product space H is not a Hilbert space, it can be extended by completion to a Hilbert space This means that is a linear subspace of the inner product of is the restriction of that of and is dense in for the topology defined by the norm.

View the full Wikipedia page for Orthogonal vectors
↑ Return to Menu