Angiosperm in the context of Clade


Angiosperm in the context of Clade

Angiosperm Study page number 1 of 2

Play TriviaQuestions Online!

or

Skip to study material about Angiosperm in the context of "Clade"


⭐ Core Definition: Angiosperm

Flowering plants are plants that bear flowers and fruits, and form the clade Angiospermae (/ˌæniəˈspɜːrm/). The term angiosperm is derived from the Greek words ἀγγεῖον (angeion; 'container, vessel') and σπέρμα (sperma; 'seed'), meaning that the seeds are enclosed within a fruit. The group was formerly called Magnoliophyta.

Angiosperms are by far the most diverse group of land plants with 64 orders, 416 families, approximately 13,000 known genera and 300,000 known species. They include all forbs (flowering plants without a woody stem), grasses and grass-like plants, a vast majority of broad-leaved trees, shrubs and vines, and most aquatic plants. Angiosperms are distinguished from the other major seed plant clade, the gymnosperms, by having flowers, xylem consisting of vessel elements instead of tracheids, endosperm within their seeds, and fruits that completely envelop the seeds. The ancestors of flowering plants diverged from the common ancestor of all living gymnosperms before the end of the Carboniferous, over 300 million years ago. In the Cretaceous, angiosperms diversified explosively, becoming the dominant group of plants across the planet.

↓ Menu
HINT:

In this Dossier

Angiosperm in the context of Tree

In botany, a tree is a perennial plant with an elongated stem, or trunk, usually supporting branches and leaves. In some usages, the definition of a tree may be narrower, e.g., including only woody plants with secondary growth, only plants that are usable as lumber, or only plants above a specified height. Wider definitions include taller palms, tree ferns, bananas, and bamboos.

Trees are not a monophyletic taxonomic group but consist of a wide variety of plant species that have independently evolved a trunk and branches as a way to tower above other plants to compete for sunlight. The majority of tree species are angiosperms or hardwoods; of the rest, many are gymnosperms or softwoods. Trees tend to be long-lived, some trees reaching several thousand years old. Trees evolved around 400 million years ago, and it is estimated that there are around three trillion mature trees in the world currently.

View the full Wikipedia page for Tree
↑ Return to Menu

Angiosperm in the context of Hardwood

Hardwood is wood from angiosperm trees. These are usually found in broad-leaved temperate and tropical forests. In temperate and boreal latitudes they are mostly deciduous, but in tropics and subtropics mostly evergreen. Hardwood (which comes from angiosperm trees) contrasts with softwood (which is from gymnosperm trees).

View the full Wikipedia page for Hardwood
↑ Return to Menu

Angiosperm in the context of Softwood

Softwood is wood from gymnosperm trees such as conifers. The term is opposed to hardwood, which is the wood from angiosperm trees. The main differences between hardwoods and softwoods is that the softwoods completely lack vessels (pores). The main softwood species (pines, spruces, larches, false tsugas) also have resin canals (or ducts) in their structure.

View the full Wikipedia page for Softwood
↑ Return to Menu

Angiosperm in the context of Pollination

Pollination is the transfer of pollen from an anther of a plant to the stigma of a plant, later enabling fertilisation and the production of seeds. Pollinating agents can be animals such as insects, for example bees, beetles or butterflies; birds, and bats; water; wind; and even plants themselves. Pollinating animals travel from plant to plant carrying pollen on their bodies in a vital interaction that allows the transfer of genetic material critical to the reproductive system of most flowering plants. Self-pollination occurs within a closed flower. Pollination often occurs within a species. When pollination occurs between species, it can produce hybrid offspring in nature and in plant breeding work.

In angiosperms, after the pollen grain (gametophyte) has landed on the stigma, it germinates and develops a pollen tube which grows down the style until it reaches an ovary. Its two gametes travel down the tube to where the gametophyte(s) containing the female gametes are held within the carpel. After entering an ovule through the micropyle, one male nucleus fuses with the polar bodies to produce the endosperm tissues, while the other fuses with the egg cell to produce the embryo. Hence the term: "double fertilisation". This process would result in the production of a seed, made of both nutritious tissues and embryo.

View the full Wikipedia page for Pollination
↑ Return to Menu

Angiosperm in the context of Land plant

The embryophytes (/ˈɛmbriəˌfts/) are a clade of plants, known as Embryophyta (Plantae sensu strictissimo) (/ˌɛmbriˈɒfətə, -ˈftə/) or land plants. They are the most familiar group of photoautotrophs that make up the vegetation on Earth's dry lands and wetlands. Embryophytes have a common ancestor with green algae, having emerged within the Phragmoplastophyta clade of freshwater charophyte green algae as a sister taxon of Charophyceae, Coleochaetophyceae and Zygnematophyceae. Embryophytes consist of the bryophytes and the polysporangiophytes. Living embryophytes include hornworts, liverworts, mosses, lycophytes, ferns, gymnosperms and angiosperms (flowering plants). Embryophytes have haplodiplontic life cycles.

The embryophytes are informally called "land plants" because they thrive primarily in terrestrial habitats (despite some members having evolved secondarily to live once again in semiaquatic/aquatic habitats), while the related green algae are primarily aquatic. Embryophytes are complex multicellular eukaryotes with specialized reproductive organs. The name derives from their innovative characteristic of nurturing the young embryo sporophyte during the early stages of its multicellular development within the tissues of the parent gametophyte. With very few exceptions, embryophytes obtain biological energy by photosynthesis, using chlorophyll a and b to harvest the light energy in sunlight for carbon fixation from carbon dioxide and water in order to synthesize carbohydrates while releasing oxygen as a byproduct. The study of land plants is called phytology.

View the full Wikipedia page for Land plant
↑ Return to Menu

Angiosperm in the context of Charophyta

Charophyta (UK: /kəˈrɒfɪtə, ˌkærəˈftə/) is a paraphyletic group of freshwater green algae, called charophytes (/ˈkærəˌfts/), sometimes treated as a division, yet also as a superdivision. The terrestrial plants, the Embryophyta emerged deep within Charophyta, possibly from terrestrial unicellular charophytes, with the class Zygnematophyceae as a sister group.

With the Embryophyta now cladistically placed in the Charophyta, it is a synonym of Streptophyta. The sister group of the charophytes are the Chlorophyta. In some charophyte groups, such as the Zygnematophyceae or conjugating green algae, flagella are absent and sexual reproduction does not involve free-swimming flagellate sperm. Flagellate sperm, however, are found in stoneworts (Charales) and Coleochaetales, orders of parenchymatous charophytes that are the closest relatives of the land plants, where flagellate sperm are also present in all except the conifers and flowering plants. Fossil stoneworts of early Devonian age that are similar to those of the present day have been described from the Rhynie chert of Scotland. Somewhat different charophytes have also been collected from the Late Devonian (Famennian) Waterloo Farm lagerstätte of South Africa. These include two species each of Octochara and Hexachara, which are the oldest fossils of Charophyte axes bearing in situ oogonia.

View the full Wikipedia page for Charophyta
↑ Return to Menu

Angiosperm in the context of Evolutionary history of plants

The evolution of plants has resulted in a wide range of complexity, from the earliest algal mats of unicellular archaeplastids evolved through endosymbiosis, through multicellular marine and freshwater green algae, to spore-bearing terrestrial bryophytes, lycopods and ferns, and eventually to the complex seed-bearing gymnosperms and angiosperms (flowering plants) of today. While many of the earliest groups continue to thrive, as exemplified by red and green algae in marine environments, more recently derived groups have displaced previously ecologically dominant ones; for example, the ascendance of flowering plants over gymnosperms in terrestrial environments.

There is evidence that cyanobacteria and multicellular thalloid eukaryotes lived in freshwater communities on land as early as 1 billion years ago, and that communities of complex, multicellular photosynthesizing organisms existed on land in the late Precambrian, around 850 million years ago.

View the full Wikipedia page for Evolutionary history of plants
↑ Return to Menu

Angiosperm in the context of Pteridospermatophyta

Pteridospermatophyta, also called pteridosperms or seed ferns, are a polyphyletic grouping of extinct seed-producing plants. The earliest fossil evidence for plants of this type are the lyginopterids of late Devonian age. They flourished particularly during the Carboniferous and Permian periods. Pteridosperms declined during the Mesozoic Era and had mostly disappeared by the end of the Cretaceous Period, though Komlopteris seem to have survived into Eocene times, based on fossil finds in Tasmania.

With regard to the enduring utility of this division, many palaeobotanists still use the pteridosperm grouping in an informal sense to refer to the seed plants that are not angiosperms, coniferoids (conifers or cordaites), ginkgophytes (ginkgos or czekanowskiales), cycadophytes (cycads or bennettites), or gnetophytes. This is particularly useful for extinct seed plant groups whose systematic relationships remain speculative, as they can be classified as pteridosperms with no invalid implications being made as to their systematic affinities. Also, from a purely curatorial perspective the term pteridosperms is a useful shorthand for describing the fern-like fronds that were probably produced by seed plants, which are commonly found in many Palaeozoic and Mesozoic fossil floras.

View the full Wikipedia page for Pteridospermatophyta
↑ Return to Menu

Angiosperm in the context of Antheridia

An antheridium is a haploid structure or organ producing and containing male gametes (called antherozoids or sperm). The plural form is antheridia, and a structure containing one or more antheridia is called an androecium.

Antheridia are present in the gametophyte phase of cryptogams like bryophytes and ferns. Many algae and some fungi, for example, ascomycetes and water moulds, also have antheridia during their reproductive stages. In gymnosperms and angiosperms, the male gametophytes have been reduced to pollen grains, and in most of these, the antheridia have been reduced to a single generative cell within the pollen grain. During pollination, this generative cell divides and gives rise to sperm cells.

View the full Wikipedia page for Antheridia
↑ Return to Menu

Angiosperm in the context of Cretaceous Terrestrial Revolution

The Cretaceous Terrestrial Revolution (abbreviated KTR), also known as the Angiosperm Terrestrial Revolution (ATR) by authors who consider it to have lasted into the Paleogene, describes the intense floral diversification of flowering plants (angiosperms) and the coevolution of pollinating insects (especially anthophilans and lepidopterans), as well as the subsequent faunal radiation of various frugivorous, nectarivorous and insectivorous terrestrial animals then at the lower food web levels such as mammals, avialans (early birds and close relatives), squamate reptiles (lizards and snakes), lissamphibians (especially frogs) and web-spinning spiders, during the Cretaceous period.

After the K-Pg extinction event devastated the Mesozoic terrestrial ecosystems and wiped out nearly all animals weighing more than 25 kg (55 lb), the survivors among these smaller animals that thrived during the KTR recovered first to reoccupy the ecological niches vacated by the extinction of non-avian dinosaurs and pterosaurs, and therefore became the dominant clades of the Cenozoic terrestrial faunas. Flowering plants also quickly became the mainstream florae during the Cenozoic, replacing the previously more prevalent gymnosperms and ferns.

View the full Wikipedia page for Cretaceous Terrestrial Revolution
↑ Return to Menu

Angiosperm in the context of Floral diagram

A floral diagram is a graphic representation of the structure of a flower. It shows the number of floral organs, their arrangement and fusion. Different parts of the flower are represented by their respective symbols. Floral diagrams are useful for flower identification or can help in understanding angiosperm evolution. They were introduced in the late 19th century and are generally attributed to A. W. Eichler.

They are typically used with the floral formula of that flower to study its morphology.

View the full Wikipedia page for Floral diagram
↑ Return to Menu

Angiosperm in the context of Self-incompatibility

Self-incompatibility (SI) is a general name for several genetic mechanisms that prevent self-fertilization in sexually reproducing organisms, and thus encourage outcrossing and allogamy. It is contrasted with separation of sexes among individuals (dioecy), and their various modes of spatial (herkogamy) and temporal (dichogamy) separation.

SI is best-studied and particularly common in flowering plants, although it is present in other groups, including sea squirts and fungi. In plants with SI, when a pollen grain produced in a plant reaches a stigma of the same plant or another plant with a matching allele or genotype, the process of pollen germination, pollen-tube growth, ovule fertilization, or embryo development is inhibited, and consequently no seeds are produced. SI is one of the most important means of preventing inbreeding and promoting the generation of new genotypes in plants and it is considered one of the causes of the spread and success of angiosperms on Earth.

View the full Wikipedia page for Self-incompatibility
↑ Return to Menu

Angiosperm in the context of Aril

An aril (/ˈærɪl/), also called arillus (plural arilli), is a specialized outgrowth from a seed that partly or completely covers the seed. An arillode, or false aril, is sometimes distinguished: whereas an aril grows from the attachment point of the seed to the ovary (from the funiculus or hilum), an arillode forms from a different point on the seed coat. The term "aril" is sometimes applied to any fleshy appendage of the seed in flowering plants, such as the mace of the nutmeg seed. Arils and arillodes are often edible enticements that encourage animals to transport the seed, thereby assisting in seed dispersal. Pseudarils are aril-like structures commonly found on the pyrenes of Burseraceae species that develop from the mesocarp of the ovary. The fleshy, edible pericarp splits neatly in two halves, then falling away or being eaten to reveal a brightly coloured pseudaril around the black seed.

The aril may create a fruit-like structure, called (among other names) a false fruit. False fruit are found in numerous Angiosperm taxa. The edible false fruit of the longan, lychee and ackee fruits are highly developed arils surrounding the seed rather than a pericarp layer. Such arils are also found in a few species of gymnosperms, notably the yews and related conifers such as the lleuque and the kahikatea. Instead of the woody cone typical of most gymnosperms, the reproductive structure of the yew consists of a single seed that becomes surrounded by a fleshy, cup-like covering. This covering is derived from a highly modified cone scale.

View the full Wikipedia page for Aril
↑ Return to Menu

Angiosperm in the context of List of edible seeds

An edible seed is a seed that is suitable for human consumption. Of the six major plant parts, seeds are the dominant source of human calories and protein. A wide variety of plant species provide edible seeds; most are angiosperms, while a few are gymnosperms. As a global food source, the most important edible seeds by weight are cereals, followed by legumes, nuts, and spices.

Grain crops (cereals and millets) and legumes correspond with the botanical families Poaceae and Fabaceae, respectively, while nuts, pseudocereals, and other seeds form polyphylic groups based on their culinary roles.

View the full Wikipedia page for List of edible seeds
↑ Return to Menu