André-Marie Ampère in the context of List of the 72 names on the Eiffel Tower


André-Marie Ampère in the context of List of the 72 names on the Eiffel Tower

⭐ Core Definition: André-Marie Ampère

André-Marie Ampère (UK: /ˈæmpɛər/, US: /ˈæmpɪər/; French: [ɑ̃dʁe maʁi ɑ̃pɛʁ]; 20 January 1775 – 10 June 1836) was a French physicist and mathematician who was one of the founders of the science of classical electromagnetism, which he referred to as electrodynamics. He is also the inventor of numerous applications, such as the solenoid (a term coined by him) and the electrical telegraph. As an autodidact, Ampère was a member of the French Academy of Sciences and professor at the École polytechnique and the Collège de France.

The SI unit of electric current, the ampere (A), is named after him. His name is also one of the 72 names inscribed on the Eiffel Tower. The term kinematic is the English version of his cinématique, which he constructed from the Greek κίνημα kinema ("movement, motion"), itself derived from κινεῖν kinein ("to move").

↓ Menu
HINT:

In this Dossier

André-Marie Ampère in the context of Ampere

The ampere (/ˈæmpɛər/ AM-pair, US: /ˈæmpɪər/ AM-peer; symbol: A), often shortened to amp, is the unit of electric current in the International System of Units (SI). One ampere is equal to 1 coulomb (C) moving past a point per second. It is named after French mathematician and physicist André-Marie Ampère (1775–1836), considered the father of electromagnetism along with Danish physicist Hans Christian Ørsted.

As of the 2019 revision of the SI, the ampere is defined by fixing the elementary charge e to be exactly 1.602176634×10 C, which means an ampere is an electric current equivalent to 10 elementary charges moving every 1.602176634 seconds, or approximately 6.241509074×10 elementary charges moving in a second. Prior to the redefinition, the ampere was defined as the current passing through two parallel wires 1 metre apart that produces a magnetic force of 2×10 newtons per metre.

View the full Wikipedia page for Ampere
↑ Return to Menu

André-Marie Ampère in the context of Solenoid

A solenoid (/ˈslənɔɪd/) is a type of electromagnet formed by a helical coil of wire whose length is substantially greater than its diameter, which generates a controlled magnetic field. The coil can produce a uniform magnetic field in a volume of space when an electric current is passed through it.

André-Marie Ampère coined the term solenoid in 1823, having conceived of the device in 1820. The French term originally created by Ampère is solénoïde, which is a French transliteration of the Greek word σωληνοειδής which means tubular.

View the full Wikipedia page for Solenoid
↑ Return to Menu

André-Marie Ampère in the context of History of electromagnetism

The history of electromagnetic theory begins with ancient measures to understand atmospheric electricity, in particular lightning. People then had little understanding of electricity, and were unable to explain the phenomena. Scientific understanding and research into the nature of electricity grew throughout the eighteenth and nineteenth centuries through the work of researchers such as André-Marie Ampère, Charles-Augustin de Coulomb, Michael Faraday, Carl Friedrich Gauss and James Clerk Maxwell.

In the 19th century it had become clear that electricity and magnetism were related, and their theories were unified: wherever charges are in motion electric current results, and magnetism is due to electric current. The source for electric field is electric charge, whereas that for magnetic field is electric current (charges in motion).

View the full Wikipedia page for History of electromagnetism
↑ Return to Menu

André-Marie Ampère in the context of Ampere's circuital law

In classical electromagnetism, Ampère's circuital law, often simply called Ampère's law, and sometimes Oersted's law, relates the circulation of a magnetic field around a closed loop to the electric current passing through that loop.

The law was inspired by Hans Christian Ørsted's 1820 discovery that an electric current generates a magnetic field. This finding prompted theoretical and experimental work by André-Marie Ampère and others, eventually leading to the formulation of the law in its modern form.

View the full Wikipedia page for Ampere's circuital law
↑ Return to Menu

André-Marie Ampère in the context of Galvanometer

A galvanometer is an electromechanical measuring instrument for electric current. Early galvanometers were uncalibrated, but improved versions, called ammeters, were calibrated and could measure the flow of current more precisely. Galvanometers work by deflecting a pointer in response to an electric current flowing through a coil in a constant magnetic field. The mechanism is also used as an actuator in applications such as hard disks.

Galvanometers came from the observation, first noted by Hans Christian Ørsted in 1820, that a magnetic compass's needle deflects when near a wire having electric current. They were the first instruments used to detect and measure small amounts of current. André-Marie Ampère, who gave mathematical expression to Ørsted's discovery, named the instrument after the Italian electricity researcher Luigi Galvani, who in 1791 discovered the principle of the frog galvanoscope – that electric current would make the legs of a dead frog jerk.

View the full Wikipedia page for Galvanometer
↑ Return to Menu

André-Marie Ampère in the context of Commutator (electric)

A commutator is a rotary electrical switch in certain types of electric motors and electrical generators that periodically reverses the current direction between the rotor and the external circuit. It consists of a cylinder composed of multiple metal contact segments on the rotating armature of the machine. Two or more electrical contacts called "brushes" made of a soft conductive material like carbon press against the commutator, making sliding contact with successive segments of the commutator as it rotates. The windings (coils of wire) on the armature are connected to the commutator segments.

Commutators are used in direct current (DC) machines: dynamos (DC generators) and many DC motors as well as universal motors. In a motor the commutator applies electric current to the windings. By reversing the current direction in the rotating windings each half turn, a steady rotating force (torque) is produced. In a generator the commutator picks off the current generated in the windings, reversing the direction of the current with each half turn, serving as a mechanical rectifier to convert the alternating current from the windings to unidirectional direct current in the external load circuit. The first direct current commutator-type machine, the dynamo, was built by Hippolyte Pixii in 1832, based on a suggestion by André-Marie Ampère.

View the full Wikipedia page for Commutator (electric)
↑ Return to Menu