Analog-to-digital converter in the context of Computer data


Analog-to-digital converter in the context of Computer data

Analog-to-digital converter Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Analog-to-digital converter in the context of "Computer data"


⭐ Core Definition: Analog-to-digital converter

In electronics, an analog-to-digital converter (ADC, A/D, or A-to-D) is a system that converts an analog signal, such as from fingers touching a touchscreen, sound entering a microphone, or light entering a digital camera, into a digital signal.

An ADC may also provide an isolated measurement such as an electronic device that converts an analog input voltage or current to a digital number representing the magnitude of the voltage or current. Typically the digital output is a two's complement binary number that is proportional to the input, but there are other possibilities.

↓ Menu
HINT:

In this Dossier

Analog-to-digital converter in the context of Digital recording

In digital recording, an audio or video signal is converted into a stream of discrete numbers representing the changes over time in air pressure for audio, or chroma and luminance values for video. This number stream is saved to a storage device. To play back a digital recording, the numbers are retrieved and converted back into their original analog audio or video forms so that they can be heard or seen.

In a properly matched analog-to-digital converter (ADC) and digital-to-analog converter (DAC) pair, the analog signal is accurately reconstructed, within the constraints of the Nyquist–Shannon sampling theorem, which dictates the sampling rate and quantization error dependent on the audio or video bit depth. Because the signal is stored digitally, assuming proper error detection and correction, the recording is not degraded by copying, storage or interference.

View the full Wikipedia page for Digital recording
↑ Return to Menu

Analog-to-digital converter in the context of Data (computer science)

In computer science, data (treated as singular, plural, or as a mass noun) is any sequence of one or more symbols; datum is a single unit of data. Data requires interpretation to become information. Digital data is data that is represented using the binary number system of ones (1) and zeros (0), instead of analog representation. In modern (post-1960) computer systems, all data is digital.

Data exists in three states: data at rest, data in transit and data in use. Data within a computer, in most cases, moves as parallel data. Data moving to or from a computer, in most cases, moves as serial data. Data sourced from an analog device, such as a temperature sensor, may be converted to digital using an analog-to-digital converter. Data representing quantities, characters, or symbols on which operations are performed by a computer are stored and recorded on magnetic, optical, electronic, or mechanical recording media, and transmitted in the form of digital electrical or optical signals. Data pass in and out of computers via peripheral devices.

View the full Wikipedia page for Data (computer science)
↑ Return to Menu

Analog-to-digital converter in the context of Digital audio

Digital audio is a representation of sound recorded in, or converted into, digital form. In digital audio, the sound wave of the audio signal is typically encoded as numerical samples in a continuous sequence. For example, in CD audio, samples are taken 44,100 times per second, each with 16-bit resolution. Digital audio is also the name for the entire technology of sound recording and reproduction using audio signals that have been encoded in digital form. Following significant advances in digital audio technology during the 1970s and 1980s, it gradually replaced analog audio technology in many areas of audio engineering, record production and telecommunications in the 1990s and 2000s.

In a digital audio system, an analog electrical signal representing the sound is converted with an analog-to-digital converter (ADC) into a digital signal, typically using pulse-code modulation (PCM). This digital signal can then be recorded, edited, modified, and copied using computers, audio playback machines, and other digital tools. For playback, a digital-to-analog converter (DAC) performs the reverse process, converting a digital signal back into an analog signal, which is then sent through an audio power amplifier and ultimately to a loudspeaker.

View the full Wikipedia page for Digital audio
↑ Return to Menu

Analog-to-digital converter in the context of Digital-to-analog converter

In electronics, a digital-to-analog converter (DAC, D/A, D2A, or D-to-A) is a system that converts a digital signal into an analog signal. An analog-to-digital converter (ADC) performs the reverse function.

DACs are commonly used in music players to convert digital data streams into analog audio signals. They are also used in televisions and mobile phones to convert digital video data into analog video signals. These two applications use DACs at opposite ends of the frequency/resolution trade-off. The audio DAC is a low-frequency, high-resolution type, while the video DAC is a high-frequency low- to medium-resolution type.

View the full Wikipedia page for Digital-to-analog converter
↑ Return to Menu

Analog-to-digital converter in the context of Quantization error

In mathematics and digital signal processing, quantization is the process of mapping input values from a large set (often a continuous set) to output values in a (countable) smaller set, often with a finite number of elements. Rounding and truncation are typical examples of quantization processes. Quantization is involved to some degree in nearly all digital signal processing, as the process of representing a signal in digital form ordinarily involves rounding. Quantization also forms the core of essentially all lossy compression algorithms.

The difference between an input value and its quantized value (such as round-off error) is referred to as quantization error, noise or distortion. A device or algorithmic function that performs quantization is called a quantizer. An analog-to-digital converter is an example of a quantizer.

View the full Wikipedia page for Quantization error
↑ Return to Menu

Analog-to-digital converter in the context of Digital photography

Digital photography uses cameras containing arrays of electronic photodetectors interfaced to an analog-to-digital converter (ADC) to produce images focused by a lens, as opposed to an exposure on photographic film. The digitized image is stored as a computer file ready for further digital processing, viewing, electronic publishing, or digital printing. It is a form of digital imaging based on gathering visible light (or for scientific instruments, light in various ranges of the electromagnetic spectrum).

Until the advent of such technology, photographs were made by exposing light-sensitive photographic film and paper, which was processed in liquid chemical solutions to develop and stabilize the image. Digital photographs are typically created solely by computer-based photoelectric and mechanical techniques, without wet bath chemical processing.

View the full Wikipedia page for Digital photography
↑ Return to Menu

Analog-to-digital converter in the context of Voltmeter

A voltmeter is an instrument used for measuring electric potential difference between two points in an electric circuit. It is connected in parallel. It usually has a high resistance so that it takes negligible current from the circuit.

Analog voltmeters move a pointer across a scale in proportion to the voltage measured and can be built from a galvanometer and series resistor. Meters using amplifiers can measure tiny voltages of microvolts or less. Digital voltmeters give a numerical display of voltage by use of an analog-to-digital converter.

View the full Wikipedia page for Voltmeter
↑ Return to Menu

Analog-to-digital converter in the context of Audio codec

An audio codec is a device or computer program capable of encoding or decoding a digital data stream (a codec) that encodes or decodes audio. In software, an audio codec is a computer program implementing an algorithm that compresses and decompresses digital audio data according to a given audio file or streaming media audio coding format. The objective of the algorithm is to represent the high-fidelity audio signal with a minimum number of bits while retaining quality. This can effectively reduce the storage space and the bandwidth required for transmission of the stored audio file. Most software codecs are implemented as libraries which interface to one or more multimedia players. Most modern audio compression algorithms are based on modified discrete cosine transform (MDCT) coding and linear predictive coding (LPC).

In hardware, audio codec refers to a single device that encodes analog audio as digital signals and decodes digital back into analog. In other words, it contains both an analog-to-digital converter (ADC) and digital-to-analog converter (DAC) running off the same clock signal. This is used in sound cards that support both audio in and out, for instance. Hardware audio codecs send and receive digital data using buses such as AC'97, SoundWire, I²S, SPI, I²C, etc. Most commonly the digital data is linear PCM, and this is the only format that most codecs support, but some legacy codecs support other formats such as G.711 for telephony.

View the full Wikipedia page for Audio codec
↑ Return to Menu

Analog-to-digital converter in the context of Direction of arrival

In signal processing, direction of arrival (DOA) denotes the direction from which usually a propagating wave arrives at a point, where usually a set of sensors are located. These set of sensors forms what is called a sensor array. Often there is the associated technique of beamforming which is estimating the signal from a given direction. Various engineering problems addressed in the associated literature are:

Advanced sophisticated techniques perform joint direction of arrival and time of arrival (ToA) estimation to allow a more accurate localization of a node. This also has the merit of localizing more targets with less antenna resources. Indeed, it is well-known in the array processing community that, generally speaking, one can resolve targets via antennas. When JADE (joint angle and delay) estimation is employed, one can go beyond this limit.

View the full Wikipedia page for Direction of arrival
↑ Return to Menu

Analog-to-digital converter in the context of Software-defined radio

Software-defined radio (SDR) is a radio communication system where components that conventionally have been implemented in analog hardware (e.g. mixers, filters, amplifiers, modulators/demodulators, detectors, etc.) are instead implemented by means of software on a computer or embedded system.

A basic SDR system may consist of a computer equipped with a sound card, or other analog-to-digital converter, preceded by some form of RF front end. Significant amounts of signal processing are handed over to the general-purpose processor, rather than being done in special-purpose hardware (electronic circuits). Such a design produces a radio which can receive and transmit widely different radio protocols (sometimes referred to as waveforms) based solely on the software used.

View the full Wikipedia page for Software-defined radio
↑ Return to Menu

Analog-to-digital converter in the context of Multiplexer

In electronics, a multiplexer (or mux; spelled sometimes as multiplexor), also known as a data selector, is a device that selects between several analog or digital input signals and forwards the selected input to a single output line. The selection is directed by a separate set of digital inputs known as select lines. A multiplexer of inputs has select lines, which are used to select which input line to send to the output.

A multiplexer makes it possible for several input signals to share one device or resource, for example, one analog-to-digital converter or one communications transmission medium, instead of having one device per input signal. Multiplexers can also be used to implement Boolean functions of multiple variables.

View the full Wikipedia page for Multiplexer
↑ Return to Menu