Amyotrophic lateral sclerosis in the context of "Spasticity"

Play Trivia Questions online!

or

Skip to study material about Amyotrophic lateral sclerosis in the context of "Spasticity"

Ad spacer

⭐ Core Definition: Amyotrophic lateral sclerosis

Amyotrophic lateral sclerosis (ALS), also known as motor neuron disease (MND) or—in the United States and CanadaLou Gehrig's disease (LGD), is a rare, terminal neurodegenerative disorder that results in the progressive loss of both upper and lower motor neurons that normally control voluntary muscle contraction. ALS is the most common form of the broader group of motor neuron diseases. ALS often presents in its early stages with gradual muscle stiffness, twitches, weakness, and wasting. Motor neuron loss typically continues until the abilities to eat, speak, move, and breathe without mechanical support are lost. While only 15% of people with ALS also develop full-blown frontotemporal dementia, an estimated 50% face at least minor changes in thinking and behavior, and a loss of energy, possibly secondary to metabolic dysfunction, is thought to drive a characteristic loss of empathy. Depending on which of the aforementioned symptoms develops first, ALS is classified as limb-onset (begins with weakness in the arms or legs) or bulbar-onset (begins with difficulty in speaking and/or swallowing). Respiratory onset occurs in approximately 1%–3% of cases.

Most cases of ALS (about 90–95%) have no known cause, and are known as sporadic ALS. However, both genetic and environmental factors are believed to be involved. The remaining 5–10% of cases have a genetic cause, often linked to a family history of the disease, and these are known as familial ALS (hereditary). About half of these genetic cases are due to disease-causing variants in one of four specific genes. The diagnosis is based on a person's signs and symptoms, with testing conducted to rule out other potential causes.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Amyotrophic lateral sclerosis in the context of Neurodegenerative disease

A neurodegenerative disease is caused by the progressive loss of neurons, in the process known as neurodegeneration. Neuronal damage may also ultimately result in their death. Neurodegenerative diseases include amyotrophic lateral sclerosis, multiple sclerosis, Parkinson's disease, Alzheimer's disease, Huntington's disease, multiple system atrophy, tauopathies, and prion diseases. Neurodegeneration can be found in the brain at many different levels of neuronal circuitry, ranging from molecular to systemic. Because there is no known way to reverse the progressive degeneration of neurons, these diseases are considered to be incurable; however research has shown that the two major contributing factors to neurodegeneration are oxidative stress and inflammation. Biomedical research has revealed many similarities between these diseases at the subcellular level, including atypical protein assemblies (like proteinopathy) and induced cell death. These similarities suggest that therapeutic advances against one neurodegenerative disease might ameliorate other diseases as well.

Within neurodegenerative diseases, it is estimated that 55 million people worldwide had dementia in 2019, and that by 2050 this figure will increase to 139 million people.

↑ Return to Menu

Amyotrophic lateral sclerosis in the context of Excitotoxicity

In excitotoxicity, nerve cells suffer damage or death when the levels of otherwise necessary and safe neurotransmitters such as glutamate become pathologically high, resulting in excessive stimulation of receptors. For example, when glutamate receptors such as NMDA receptors or AMPA receptors encounter excessive levels of the excitatory neurotransmitter, glutamate, significant neuronal damage might ensue. Different mechanisms might lead to increased extracellular glutamate concentrations, e.g. reduced uptake by glutamate transporters (EAATs), synaptic hyperactivity, or abnormal release from different neural cell types. Excess glutamate allows high levels of calcium ions (Ca) to enter the cell. Ca influx into cells activates a number of enzymes, including phospholipases, endonucleases, and proteases such as calpain. These enzymes go on to damage cell structures such as components of the cytoskeleton, membrane, and DNA. In evolved, complex adaptive systems such as biological life it must be understood that mechanisms are rarely, if ever, simplistically direct. For example, NMDA, in subtoxic amounts, can block glutamate toxicity and induce neuronal survival. In addition to abnormally high neurotransmitter concentrations, also elevation of the extracellular potassium concentration, acidification and other mechanisms may contribute to excitotoxicity.

Excitotoxicity may be involved in cancers, spinal cord injury, stroke, traumatic brain injury, hearing loss (through noise overexposure or ototoxicity), and in neurodegenerative diseases of the central nervous system such as multiple sclerosis, Alzheimer's disease, amyotrophic lateral sclerosis (ALS), Parkinson's disease, alcoholism, alcohol withdrawal or hyperammonemia and especially over-rapid benzodiazepine withdrawal, and also Huntington's disease. Other common conditions that cause excessive glutamate concentrations around neurons are hypoglycemia. Blood sugars are the primary energy source for glutamate removal from inter-synaptic spaces at the NMDA and AMPA receptor site. Persons in excitotoxic shock must never fall into hypoglycemia. Patients should be given 5% glucose (dextrose) IV drip during excitotoxic shock to avoid a dangerous build up of glutamate. When 5% glucose (dextrose) IV drip is not available high levels of fructose are given orally. Treatment is administered during the acute stages of excitotoxic shock along with glutamate receptor antagonists. Dehydration should be avoided as this also contributes to the concentrations of glutamate in the inter-synaptic cleft and "status epilepticus can also be triggered by a build up of glutamate around inter-synaptic neurons."

↑ Return to Menu

Amyotrophic lateral sclerosis in the context of Protein aggregation

In molecular biology, protein aggregation is a phenomenon in which intrinsically-disordered or mis-folded proteins aggregate (i.e., accumulate and clump together) either intra- or extracellularly. Protein aggregates have been implicated in a wide variety of diseases known as amyloidoses, including ALS, Alzheimer's, Parkinson's and prion disease.

After synthesis, proteins typically fold into a particular three-dimensional conformation that is the most thermodynamically favorable: their native state. This folding process is driven by the hydrophobic effect: a tendency for hydrophobic (water-fearing) portions of the protein to shield themselves from the hydrophilic (water-loving) environment of the cell by burying into the interior of the protein. Thus, the exterior of a protein is typically hydrophilic, whereas the interior is typically hydrophobic.

↑ Return to Menu

Amyotrophic lateral sclerosis in the context of Clinical neuroscience

Clinical neuroscience is a branch of neuroscience that focuses on the scientific study of fundamental mechanisms that underlie diseases and disorders of the brain and central nervous system. It seeks to develop new ways of conceptualizing and diagnosing such disorders and ultimately of developing novel treatments.

A clinical neuroscientist is a scientist who has specialized knowledge in the field. Not all clinicians are clinical neuroscientists. Clinicians and scientists -including psychiatrists, neurologists, clinical psychologists, neuroscientists, and other specialists—use basic research findings from neuroscience in general and clinical neuroscience in particular to develop diagnostic methods and ways to prevent and treat neurobiological disorders. Such disorders include addiction, Alzheimer's disease, amyotrophic lateral sclerosis, anxiety disorders, attention deficit hyperactivity disorder, autism, bipolar disorder, brain tumors, depression, Down syndrome, dyslexia, epilepsy, Huntington's disease, multiple sclerosis, neurological AIDS, neurological trauma, pain, obsessive-compulsive disorder, Parkinson's disease, schizophrenia, sleep disorders, stroke and Tourette syndrome.

↑ Return to Menu

Amyotrophic lateral sclerosis in the context of Progressive bulbar palsy

Progressive bulbar palsy (PBP) is a medical condition. It belongs to a group of disorders known as motor neuron diseases. PBP is a disease that attacks the nerves supplying the bulbar muscles. These disorders are characterized by the degeneration of motor neurons in the cerebral cortex, spinal cord, brain stem, and pyramidal tracts. This specifically involves the glossopharyngeal nerve (IX), vagus nerve (X), and hypoglossal nerve (XII).

This disorder should not be confused with pseudobulbar palsy or progressive spinal muscular atrophy. The term infantile progressive bulbar palsy is used to describe progressive bulbar palsy in children. The ICD-11 lists progressive bulbar palsy as a variant of amyotrophic lateral sclerosis (ALS).

↑ Return to Menu

Amyotrophic lateral sclerosis in the context of Foot drop

Foot drop is a gait abnormality in which the dropping of the forefoot happens out of weakness, irritation or damage to the deep fibular nerve (deep peroneal), including the sciatic nerve, or paralysis of the muscles in the anterior portion of the lower leg. It is usually a symptom of a greater problem, not a disease in itself. Foot drop is characterized by inability or impaired ability to raise the toes or raise the foot from the ankle (dorsiflexion). Foot drop may be temporary or permanent, depending on the extent of muscle weakness or paralysis, and it can occur in one or both feet. In walking, the raised leg is slightly bent at the knee to prevent the foot from dragging along the ground.

Foot drop can be caused by nerve damage alone or by muscle or spinal cord trauma, abnormal anatomy, toxins, or disease. Toxins include organophosphate compounds which have been used as pesticides and as chemical agents in warfare. The poison can lead to further damage to the body such as a neurodegenerative disorder called organophosphorus induced delayed polyneuropathy. This disorder causes loss of function of the motor and sensory neural pathways. In this case, foot drop could be the result of paralysis due to neurological dysfunction. Diseases that can cause foot drop include trauma to the posterolateral neck of fibula, stroke, amyotrophic lateral sclerosis, muscular dystrophy, poliomyelitis, Charcot–Marie–Tooth disease, multiple sclerosis, cerebral palsy, hereditary spastic paraplegia, Guillain–Barré syndrome, Welander distal myopathy, Friedreich's ataxia, chronic compartment syndrome, and severe nerve entrapment. It may also occur as a result of hip replacement surgery or knee ligament reconstruction surgery.

↑ Return to Menu