Amylase in the context of "Dryness (taste)"

Play Trivia Questions online!

or

Skip to study material about Amylase in the context of "Dryness (taste)"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Amylase in the context of Herbivore

A herbivore is an animal anatomically and physiologically evolved to feed on plants, especially upon vascular tissues such as foliage, fruits or seeds, as the main component of its diet. These more broadly also encompass animals that eat non-vascular autotrophs such as mosses, algae and lichens, but do not include those feeding on decomposed plant matters (i.e. detritivores) or macrofungi (i.e. fungivores).

As a result of their plant-based diet, herbivorous animals typically have mouth structures (jaws or mouthparts) well adapted to mechanically break down plant materials, and their digestive systems have special enzymes (e.g. amylase and cellulase) to digest polysaccharides. Grazing herbivores such as horses and cattles have wide flat-crowned teeth that are better adapted for grinding grass, tree bark and other tougher lignin-containing materials, and many of them evolved rumination or cecotropic behaviors to better extract nutrients from plants. A large percentage of herbivores also have mutualistic gut flora made up of bacteria and protozoans that help to degrade the cellulose in plants, whose heavily cross-linking polymer structure makes it far more difficult to digest than the protein- and fat-rich animal tissues that carnivores eat.

↑ Return to Menu

Amylase in the context of Human digestive system

The human digestive system consists of the gastrointestinal tract plus the accessory organs of digestion (the tongue, salivary glands, pancreas, liver, and gallbladder). Digestion involves the breakdown of food into smaller and smaller components, until they can be absorbed and assimilated into the body. The process of digestion has three stages: the cephalic phase, the gastric phase, and the intestinal phase.

The first stage, the cephalic phase of digestion, begins with secretions from gastric glands in response to the sight and smell of food, and continues in the mouth with the mechanical breakdown of food by chewing, and the chemical breakdown by digestive enzymes in the saliva. Saliva contains amylase, and lingual lipase, secreted by the salivary glands, and serous glands on the tongue. Chewing mixes the food with saliva to produce a bolus to be swallowed down the esophagus to enter the stomach. The second stage, the gastric phase, takes place in the stomach, where the food is further broken down by mixing with gastric juice until it passes into the duodenum, the first part of the small intestine. The intestinal phase where the partially digested food is mixed with pancreatic digestive enzymes completes the process of digestion.

↑ Return to Menu

Amylase in the context of Amylopectin

Amylopectin /ˌæmɪlˈpɛktɪn/ is a water-insoluble polysaccharide and highly branched polymer of α-glucose units found in plants. It is one of the two components of starch, the other being amylose.

Plants store starch within specialized organelles called amyloplasts. To generate energy, the plant hydrolyzes the starch, releasing the glucose subunits. Humans and other animals that eat plant foods also use amylase, an enzyme that assists in breaking down amylopectin, to initiate the hydrolysis of starch.

↑ Return to Menu

Amylase in the context of Saliva

Saliva (commonly referred as spit or drool) is an extracellular fluid produced and secreted by salivary glands in the mouth. In humans, saliva is around 99% water, plus electrolytes, mucus, white blood cells, epithelial cells (from which DNA can be extracted), enzymes (such as lingual lipase and amylase), and antimicrobial agents (such as secretory IgA, and lysozymes).

The enzymes found in saliva are essential in beginning the process of digestion of dietary starches and fats. These enzymes also play a role in breaking down food particles trapped within dental crevices, thus protecting teeth from bacterial decay. Saliva also performs a lubricating function, wetting food and permitting the initiation of swallowing, and protecting the oral mucosa from drying out.

↑ Return to Menu

Amylase in the context of Saccharification

Saccharification is a term in biochemistry for denoting any chemical change wherein a monosaccharide molecule remains intact after becoming unbound from another saccharide. For example, when a carbohydrate is broken into its component sugar molecules by hydrolysis (e.g., sucrose being broken down into glucose and fructose).

Enzymes such as amylases (e.g. in saliva) and glycoside hydrolase (e.g. within the brush border of the small intestine) are able to perform exact saccharification through enzymatic hydrolysis.Through thermolysis, saccharification can also occur as a transient result, among many other possible effects, during caramelization.

↑ Return to Menu