An amphidromic point, also called a tidal node, is a geographical location where there is little or no difference in sea height between high tide and low tide; it has zero tidal amplitude for one harmonic constituent of the tide. The tidal range (the peak-to-peak amplitude, or the height difference between high tide and low tide) for that harmonic constituent increases with distance from this point, though not uniformly. As such, the concept of amphidromic points is crucial to understanding tidal behaviour. The term derives from the Greek words amphi ("around") and dromos ("running"), referring to the rotary tides which circulate around amphidromic points. It was first discovered by William Whewell, who extrapolated the cotidal lines from the coast of the North Sea and found that the lines must meet at some point.
Amphidromic points occur because interference within oceanic basins, seas and bays, combined with the Coriolis effect, creates a wave pattern — called an amphidromic system — which rotates around the amphidromic point. At the amphidromic points of the dominant tidal constituent, there is almost no vertical change in sea level from tidal action; that is, there is little or no difference between high tide and low tide at these locations. There can still be tidal currents since the water levels on either side of the amphidromic point are not the same. A separate amphidromic system is created by each periodic tidal component.