Amphibole in the context of "Nephrite"

Play Trivia Questions online!

or

Skip to study material about Amphibole in the context of "Nephrite"

Ad spacer

⭐ Core Definition: Amphibole

Amphibole (/ˈæmfəbl/ AM-fə-bohl) is a group of inosilicate minerals, forming prism or needlelike crystals, composed of double chain SiO
4
tetrahedra, linked at the vertices and generally containing ions of iron and/or magnesium in their structures. Its IMA symbol is Amp. Amphiboles can be green, black, colorless, white, yellow, blue, or brown. The International Mineralogical Association currently classifies amphiboles as a mineral supergroup, within which are two groups and several subgroups.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Amphibole in the context of Volcanic arc

A volcanic arc (also known as a magmatic arc) is a belt of volcanoes formed above a subducting oceanic tectonic plate, with the belt arranged in an arc shape as seen from above. Volcanic arcs typically parallel an oceanic trench, with the arc located further from the subducting plate than the trench. The oceanic plate is saturated with water, mostly in the form of hydrous minerals such as micas, amphiboles, and serpentines. As the oceanic plate is subducted, it is subjected to increasing pressure and temperature with increasing depth. The heat and pressure break down the hydrous minerals in the plate, releasing water into the overlying mantle. Volatiles such as water drastically lower the melting point of the mantle, causing some of the mantle to melt and form magma at depth under the overriding plate. The magma ascends to form an arc of volcanoes parallel to the subduction zone.

Volcanic arcs are distinct from volcanic chains formed over hotspots in the middle of a tectonic plate. Volcanoes often form one after another as the plate moves over the hotspot, and so the volcanoes progress in age from one end of the chain to the other. The Hawaiian Islands form a typical hotspot chain, with the older islands to the northwest and Hawaii Island itself, which is just 400,000 years old, at the southeast end of the chain over the hotspot. Volcanic arcs do not generally exhibit such a simple age-pattern.

↑ Return to Menu

Amphibole in the context of Granite

Granite (/ˈɡræ.nɪt/, GRAN-it) is a coarse-grained (phaneritic) intrusive igneous rock composed mostly of quartz, alkali feldspar, and plagioclase. It forms from magma with a high content of silica and alkali metal oxides that slowly cools and solidifies underground. It is common in the continental crust of Earth, where it is found in igneous intrusions. These range in size from dikes only a few centimeters across to batholiths exposed over hundreds of square kilometers.

Granite is typical of a larger family of granitic rocks, or granitoids, that are composed mostly of coarse-grained quartz and feldspars in varying proportions. These rocks are classified by the relative percentages of quartz, alkali feldspar, and plagioclase (the QAPF classification), with true granite representing granitic rocks rich in quartz and alkali feldspar. Most granitic rocks also contain mica or amphibole minerals, though a few (known as leucogranites) contain almost no dark minerals.

↑ Return to Menu

Amphibole in the context of Mafic

A mafic mineral or rock is a silicate mineral or igneous rock rich in magnesium and iron. Most mafic minerals are dark in color, and common rock-forming mafic minerals include olivine, pyroxene, amphibole, and biotite. Common mafic rocks include basalt, diabase and gabbro. Mafic rocks often also contain calcium-rich varieties of plagioclase feldspar. Mafic materials can also be described as ferromagnesian.

↑ Return to Menu

Amphibole in the context of Peridotite

Peridotite (US: /ˈpɛrɪdˌtt, pəˈrɪdə-/ PERR-ih-doh-tyte, pə-RID-ə-) is a dense, phaneritic (coarse-grained) igneous rock consisting mostly of the silicate minerals olivine and pyroxene. Peridotite is ultramafic, as the rock contains less than 45% silica. It is high in magnesium (Mg), reflecting the high proportions of magnesium-rich olivine, with appreciable iron. Peridotite is derived from Earth's mantle, either as solid blocks and fragments, or as crystals accumulated from magmas that formed in the mantle. The compositions of peridotites from these layered igneous complexes vary widely, reflecting the relative proportions of pyroxenes, chromite, plagioclase, and amphibole.

Peridotite is the dominant rock of the upper part of Earth's mantle. The compositions of peridotite nodules found in certain basalts are of special interest along with diamond pipes (kimberlite), because they provide samples of Earth's mantle brought up from depths ranging from about 30 km to 200 km or more. Some of the nodules preserve isotope ratios of osmium and other elements that record processes that occurred when Earth was formed, and so they are of special interest to paleogeologists because they provide clues to the early composition of Earth's mantle and the complexities of the processes that occurred.

↑ Return to Menu

Amphibole in the context of Hornblende

Hornblende is a complex inosilicate series of minerals. It is not a recognized mineral in its own right, but the name is used as a general or field term, to refer to a dark amphibole. Hornblende minerals are common in igneous and metamorphic rocks.

The general formula is (Ca,Na)2−3(Mg,Fe,Al)5(Al,Si)8O22(OH,F)2.

↑ Return to Menu

Amphibole in the context of Pyroxene

The pyroxenes (commonly abbreviated Px) are a group of important rock-forming inosilicate minerals found in many igneous and metamorphic rocks. Pyroxenes have the general formula XY(Si,Al)2O6, where X represents ions of calcium (Ca), sodium (Na), iron (Fe(II)) or magnesium (Mg) and more rarely zinc, manganese or lithium, and Y represents ions of smaller size, such as chromium (Cr), aluminium (Al), magnesium (Mg), cobalt (Co), manganese (Mn), scandium (Sc), titanium (Ti), vanadium (V) or even iron (Fe(II) or Fe(III)). Although aluminium substitutes extensively for silicon in silicates such as feldspars and amphiboles, the substitution occurs only to a limited extent in most pyroxenes. They share a common structure consisting of single chains of silica tetrahedra. Pyroxenes that crystallize in the monoclinic system are known as clinopyroxenes and those that crystallize in the orthorhombic system are known as orthopyroxenes.

The name pyroxene is derived from the Ancient Greek words for 'fire' (πυρ, pur) and 'stranger' (ξένος, xénos). Pyroxenes were so named due to their presence in volcanic lavas, where they are sometimes found as crystals embedded in volcanic glass; it was assumed they were impurities in the glass, hence the name meaning "fire stranger". However, they are simply early-forming minerals that crystallized before the lava erupted.

↑ Return to Menu

Amphibole in the context of Mineral group

In geology and mineralogy, a mineral group is a set of mineral species with essentially the same crystal structure and composed of chemically similar elements.

For example, the amphibole group consists of 15 or more mineral species, most of them with the general unit formula A
x
B
y
C
14-3x-2y
Si
8
O
22
(OH)
2
, where A is a trivalent cation such as Fe
or Al
, B is a divalent cation such as Fe
, Ca
, or Mg
, and C is an alkali metal cation such as Li
, Na
, or K
. In all these minerals, the anions consist mainly of groups of four SiO
4
tetrahedra connected by shared oxygen corners so as to form a double chain of fused six-member rings. In some of the species, aluminum Al
may replace some silicon atoms Si
in the backbone, with extra B or C cations to balance the charges.

↑ Return to Menu

Amphibole in the context of Peralkaline rock

Peralkaline rocks include those igneous rocks which have a deficiency of aluminium such that sodium and potassium are in excess of that needed for feldspar. The presence of aegerine (sodium pyroxene) and riebeckite (sodium amphibole) are indicative of peralkaline conditions. Examples are the peralkaline rhyolites, comendite and pantellerite, with comendite being the more felsic (silica-rich) rock. Another example is the peralkaline granite that forms the islet of Rockall in the North Atlantic Ocean.

Peralkaline rocks are indicative of continental rift-related volcanicity (e.g. the peralkaline rhyolites of the East African Rift in central Kenya) as well as continental and oceanic hotspot volcanicity (e.g. the peralkaline rhyolites of the Glass House Mountains in eastern Australia and the Canary Islands in the Atlantic Ocean). Peralkaline rocks related to subduction zone volcanicity have also been reported (e.g. Sardinia in Italy). Peralkaline magmas likely form when fractional crystallization removes a high proportion of plagioclase relative to mafic minerals.

↑ Return to Menu

Amphibole in the context of Jade

Jade is an umbrella term for two different types of decorative rocks used for jewelry or ornaments. Jade is often referred to by either of two different silicate mineral names: nephrite (a silicate of calcium and magnesium in the amphibole group of minerals), or jadeite (a silicate of sodium and aluminum in the pyroxene group of minerals). Nephrite is typically green, although may be yellow, white or black. Jadeite varies from white or near-colorless, through various shades of green (including an emerald green, termed 'imperial'), to lavender, yellow, orange, brown and black. Rarely it may be blue.Both of these names refer to their use as gemstones, and each has a mineralogically more specific name. Both the amphibole jade (nephrite) and pyroxene jade are mineral aggregates (rocks) rather than mineral species.

Nephrite was deprecated by the International Mineralogical Association as a mineral species name in 1978 (replaced by tremolite). The name "nephrite" is mineralogically correct for referring to the rock. Jadeite is a legitimate mineral species, differing from the pyroxene jade rock. In China, the name jadeite has been replaced with fei cui, the traditional Chinese name for this gem that was in use long before Damour created the name in 1863.

↑ Return to Menu