Amphibian in the context of "Semiaquatic"

Play Trivia Questions online!

or

Skip to study material about Amphibian in the context of "Semiaquatic"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Amphibian in the context of Aquatic animal

An aquatic animal is any animal, whether vertebrate or invertebrate, that lives in a body of water for all or most of its lifetime. Aquatic animals generally conduct aquatic respiration by extracting dissolved oxygen in water via specialised respiratory organs called gills, through the skin or across enteral mucosae, although some are secondarily aquatic animals (e.g. marine reptiles and marine mammals) evolved from terrestrial ancestors that re-adapted to aquatic environments, in which case they actually use lungs to breathe air and are essentially holding their breath when living in water. Some species of gastropod mollusc, such as the eastern emerald sea slug, are even capable of kleptoplastic photosynthesis via endosymbiosis with ingested yellow-green algae.

Almost all aquatic animals reproduce in water, either oviparously or viviparously, and many species routinely migrate between different water bodies during their life cycle. Some animals have fully aquatic life stages (typically as eggs and larvae), while as adults they become terrestrial or semi-aquatic after undergoing metamorphosis. Such examples include amphibians such as frogs, many flying insects such as mosquitoes, mayflies, dragonflies, damselflies and caddisflies, as well as some species of cephalopod molluscs such as the algae octopus (whose larvae are completely planktonic, but adults are highly terrestrial).

↑ Return to Menu

Amphibian in the context of Aquatic plant

Aquatic plants, also referred to as hydrophytes, are vascular plants and non-vascular plants that have adapted to live in aquatic environments (saltwater or freshwater). In lakes, rivers and wetlands, aquatic vegetations provide cover for aquatic animals such as fish, amphibians and aquatic insects, create substrate for benthic invertebrates, produce oxygen via photosynthesis, and serve as food for some herbivorous wildlife. Familiar examples of aquatic plants include waterlily, lotus, duckweeds, mosquito fern, floating heart, water milfoils, mare's tail, water lettuce, water hyacinth, and algae.

Aquatic plants require special adaptations for prolonged inundation in water, and for floating at the water surface. The most common adaptation is the presence of lightweight internal packing cells, aerenchyma, but floating leaves and finely dissected leaves are also common. Aquatic plants only thrive in water or in soil that is frequently saturated, and are therefore a common component of swamps and marshlands.

↑ Return to Menu

Amphibian in the context of Fresh water

Fresh water or freshwater is any naturally occurring liquid or frozen water containing low concentrations of dissolved salts and other total dissolved solids. The term excludes seawater and brackish water, but it does include non-salty mineral-rich waters, such as chalybeate springs. Fresh water may encompass frozen and meltwater in ice sheets, ice caps, glaciers, snowfields and icebergs, natural precipitations such as rainfall, snowfall, hail/sleet and graupel, and surface runoffs that form inland bodies of water such as wetlands, ponds, lakes, rivers, streams, as well as groundwater contained in aquifers, subterranean rivers and lakes.

Water is critical to the survival of all living organisms. Many organisms can thrive on salt water, but the great majority of vascular plants and most insects, amphibians, reptiles, mammals and birds need fresh water to survive.

↑ Return to Menu

Amphibian in the context of Holocene extinction

The Holocene or Anthropocene extinction is an ongoing extinction event caused by human activity during the current geological epoch, impacting diverse families of plants and animals, including mammals, birds, reptiles, amphibians, fish, and invertebrates, as well as both terrestrial and marine species. It is sometimes also called the sixth mass extinction (or seventh if counting the Capitanian and End Permian extinctions separately).

Current extinction rates are estimated at 100 to 1,000 times higher than natural background extinction rates and are accelerating. The Holocene extinction was preceded by the Late Pleistocene megafauna extinctions (lasting from 50,000 to 10,000 years ago), in which many large mammals – including 81% of megaherbivores – went extinct, a decline attributed at least in part to human (anthropogenic) activities. There continue to be strong debates about the relative importance of anthropogenic factors and climate change, but a recent review concluded that there is little evidence for a major role of climate change and "strong" evidence for human activities as the principal driver. Examples from regions such as New Zealand, Madagascar, and Hawaii have shown how human colonization and habitat destruction have led to significant biodiversity losses.

↑ Return to Menu

Amphibian in the context of Terrestrial animal

Terrestrial animals are animals that live predominantly or entirely on land (e.g., cats, chickens, ants, most spiders), as compared with aquatic animals (e.g., fish, whales, octopuses, lobsters, etc.), who live predominantly or entirely in bodies of water; and semiaquatic animals (e.g., crocodilians, seals, platypus and most amphibians), who inhabit coastal, riparian or wetland areas and rely on both aquatic and terrestrial habitats. While most insects (who constitute over half of all known species in the animal kingdom) are terrestrial, some groups, such as mosquitoes and dragonflies, spend their egg and larval stages in water but emerge as fully terrestrial adults (imagos) after completing metamorphosis.

Terrestrial animals conduct respiratory gas exchange directly with the atmosphere, typically via specialized respiratory organs known as lungs, or via cutaneous respiration across the skin. They have also evolved homeostatic features such as impermeable cuticles that can restrict fluid loss, temperature fluctuations and infection, and an excretory system that can filter out nitrogenous waste in the form of urea or uric acid, in contrast to the ammonia-based excretion of aquatic animals. Without the buoyancy of an aqueous environment to support their weight, they have evolved robust skeletons that can hold up their body shape, as well as powerful appendages known as legs or limbs to facilitate terrestrial locomotion, although some perform limbless locomotion using body surface projections such as scales and setae. Some terrestrial animals even have wings or membranes that act as airfoils to generate lift, allowing them to fly and/or glide as airborne animals.

↑ Return to Menu

Amphibian in the context of Fisheries management

The management of fisheries is broadly defined as the set of tasks which guide vested parties and managers in the optimal use of aquatic renewable resources, primarily fish. According to the Food and Agriculture Organization of the United Nations (FAO) in the 2001 Guidebook to Fisheries Management there is currently "no clear and generally accepted definitions of fisheries management". Instead, the authors use a working definition, such that fisheries management is:

The goal of fisheries management is to produce sustainable biological, environmental and socioeconomic benefits from renewable aquatic resources. Wild fisheries are classified as renewable when the organisms of interest (e.g., fish, shellfish, amphibians, reptiles and marine mammals) produce an annual biological surplus that with judicious management can be harvested without reducing future productivity. Fishery management employs activities that protect fishery resources so sustainable exploitation is possible, drawing on fisheries science and possibly including the precautionary principle.

↑ Return to Menu

Amphibian in the context of Triassic

The Triassic (/trˈæsɪk/; sometimes symbolized as 🝈) is a geologic period and a stratigraphic system that spans 50.5 million years from the end of the Permian Period 251.902 Ma (million years ago) to the beginning of the Jurassic Period 201.4 Ma. The Triassic Period is the first and shortest geologic period of the Mesozoic Era, and the seventh period of the Phanerozoic Eon. The start and the end of the Triassic Period featured major extinction events.

Chronologically, the Triassic Period is divided into three epochs: (i) the Early Triassic, (ii) the Middle Triassic, and (iii) the Late Triassic. The Triassic Period began after the Permian–Triassic extinction event that much reduced the biosphere of planet Earth. The fossil record of the Triassic Period presents three categories of organisms: (i) animals that survived the Permian–Triassic extinction event, (ii) new animals that briefly flourished in the Triassic biosphere, and (iii) new animals that evolved and dominated the Mesozoic Era. Reptiles, especially archosaurs, were the chief terrestrial vertebrates during this time. A specialized group of archosaurs, called dinosaurs, first appeared in the Late Triassic but did not become dominant until the succeeding Jurassic Period. Archosaurs that became dominant in this period were primarily pseudosuchians, relatives and ancestors of modern crocodilians, while some archosaurs specialized in flight, the first time among vertebrates, becoming the pterosaurs. Therapsids, the dominant vertebrates of the preceding Permian period, saw a brief surge in diversification in the Triassic, with dicynodonts and cynodonts quickly becoming dominant, but they declined throughout the period with the majority becoming extinct by the end. However, the first stem-group mammals (mammaliamorphs), themselves a specialized subgroup of cynodonts, appeared during the Triassic and would survive the extinction event, allowing them to radiate during the Jurassic. Amphibians were primarily represented by the temnospondyls, giant aquatic predators that had survived the end-Permian extinction and saw a new burst of diversification in the Triassic, before going extinct by the end; however, early crown-group lissamphibians (including stem-group frogs, salamanders and caecilians) also became more common during the Triassic and survived the extinction event. The earliest known neopterygian fish, including early holosteans and teleosts, appeared near the beginning of the Triassic, and quickly diversified to become among the dominant groups of fish in both freshwater and marine habitats.

↑ Return to Menu

Amphibian in the context of Larva

A larva (/ˈlɑːrvə/; pl.: larvae /ˈlɑːrv/) is a distinct juvenile form many animals undergo before metamorphosis into their next life stage. Animals with indirect development such as insects, some arachnids, amphibians, or cnidarians typically have a larval phase of their life cycle.

A larva's appearance is generally very different from the adult form (e.g. caterpillars and butterflies) including different unique structures and organs that do not occur in the adult form. Their diet may also be considerably different. In the case of smaller primitive arachnids, the larval stage differs by having three instead of four pairs of legs.

↑ Return to Menu

Amphibian in the context of Egg (food)

Humans and other hominids have consumed eggs for millions of years. The most widely consumed eggs are those of fowl, especially chickens. People in Southeast Asia began harvesting chicken eggs for food by 1500 BCE. Eggs of other birds, such as ducks and ostriches, are eaten regularly but much less commonly than those of chickens. People may also eat the eggs of reptiles, amphibians, and fish. Fish eggs consumed as food are known as roe or caviar.

Hens and other egg-laying creatures are raised throughout the world, and mass production of chicken eggs is a global industry. In 2009, an estimated 62.1 million metric tons of eggs were produced worldwide from a total laying flock of approximately 6.4 billion hens. There are issues of regional variation in demand and expectation, as well as current debates concerning methods of mass production. In 2012, the European Union banned battery husbandry of chickens.

↑ Return to Menu