Amphibian in the context of Hatchlings


Amphibian in the context of Hatchlings

Amphibian Study page number 1 of 8

Play TriviaQuestions Online!

or

Skip to study material about Amphibian in the context of "Hatchlings"


⭐ Core Definition: Amphibian

Amphibians are ectothermic, anamniotic, four-limbed vertebrate animals that constitute the class Amphibia. In its broadest sense, it is a paraphyletic group encompassing all tetrapods, but excluding the amniotes (tetrapods with an amniotic membrane, such as modern reptiles, birds and mammals). All extant (living) amphibians belong to the monophyletic subclass Lissamphibia, with three living orders: Anura (frogs and toads), Urodela (salamanders), and Gymnophiona (caecilians). Evolved to be mostly semiaquatic, amphibians have adapted to inhabit a wide variety of habitats, with most species living in freshwater, wetland or terrestrial ecosystems (such as riparian woodland, fossorial and even arboreal habitats). Their life cycle typically starts out as aquatic larvae with gills known as tadpoles, but some species have developed behavioural adaptations to bypass this.

Young amphibians generally undergo metamorphosis from an aquatic larval form with gills to an air-breathing adult form with lungs. Amphibians use their skin as a secondary respiratory interface, and some small terrestrial salamanders and frogs even lack lungs and rely entirely on their skin. They are superficially similar to reptiles like lizards, but unlike reptiles and other amniotes, require access to water bodies to breed. With their complex reproductive needs and permeable skins, amphibians are often ecological indicators to habitat conditions; in recent decades there has been a dramatic decline in amphibian populations for many species around the globe.

↓ Menu
HINT:

In this Dossier

Amphibian in the context of Aquatic animal

An aquatic animal is any animal, whether vertebrate or invertebrate, that lives in a body of water for all or most of its lifetime. Aquatic animals generally conduct aquatic respiration by extracting dissolved oxygen in water via specialised respiratory organs called gills, through the skin or across enteral mucosae, although some are secondarily aquatic animals (e.g. marine reptiles and marine mammals) evolved from terrestrial ancestors that re-adapted to aquatic environments, in which case they actually use lungs to breathe air and are essentially holding their breath when living in water. Some species of gastropod mollusc, such as the eastern emerald sea slug, are even capable of kleptoplastic photosynthesis via endosymbiosis with ingested yellow-green algae.

Almost all aquatic animals reproduce in water, either oviparously or viviparously, and many species routinely migrate between different water bodies during their life cycle. Some animals have fully aquatic life stages (typically as eggs and larvae), while as adults they become terrestrial or semi-aquatic after undergoing metamorphosis. Such examples include amphibians such as frogs, many flying insects such as mosquitoes, mayflies, dragonflies, damselflies and caddisflies, as well as some species of cephalopod molluscs such as the algae octopus (whose larvae are completely planktonic, but adults are highly terrestrial).

View the full Wikipedia page for Aquatic animal
↑ Return to Menu

Amphibian in the context of Aquatic plant

Aquatic plants, also referred to as hydrophytes, are vascular plants and non-vascular plants that have adapted to live in aquatic environments (saltwater or freshwater). In lakes, rivers and wetlands, aquatic vegetations provide cover for aquatic animals such as fish, amphibians and aquatic insects, create substrate for benthic invertebrates, produce oxygen via photosynthesis, and serve as food for some herbivorous wildlife. Familiar examples of aquatic plants include waterlily, lotus, duckweeds, mosquito fern, floating heart, water milfoils, mare's tail, water lettuce, water hyacinth, and algae.

Aquatic plants require special adaptations for prolonged inundation in water, and for floating at the water surface. The most common adaptation is the presence of lightweight internal packing cells, aerenchyma, but floating leaves and finely dissected leaves are also common. Aquatic plants only thrive in water or in soil that is frequently saturated, and are therefore a common component of swamps and marshlands.

View the full Wikipedia page for Aquatic plant
↑ Return to Menu

Amphibian in the context of Fresh water

Fresh water or freshwater is any naturally occurring liquid or frozen water containing low concentrations of dissolved salts and other total dissolved solids. The term excludes seawater and brackish water, but it does include non-salty mineral-rich waters, such as chalybeate springs. Fresh water may encompass frozen and meltwater in ice sheets, ice caps, glaciers, snowfields and icebergs, natural precipitations such as rainfall, snowfall, hail/sleet and graupel, and surface runoffs that form inland bodies of water such as wetlands, ponds, lakes, rivers, streams, as well as groundwater contained in aquifers, subterranean rivers and lakes.

Water is critical to the survival of all living organisms. Many organisms can thrive on salt water, but the great majority of vascular plants and most insects, amphibians, reptiles, mammals and birds need fresh water to survive.

View the full Wikipedia page for Fresh water
↑ Return to Menu

Amphibian in the context of Holocene extinction

The Holocene or Anthropocene extinction is an ongoing extinction event caused by human activity during the current geological epoch, impacting diverse families of plants and animals, including mammals, birds, reptiles, amphibians, fish, and invertebrates, as well as both terrestrial and marine species. It is sometimes also called the sixth mass extinction (or seventh if counting the Capitanian and End Permian extinctions separately).

Current extinction rates are estimated at 100 to 1,000 times higher than natural background extinction rates and are accelerating. The Holocene extinction was preceded by the Late Pleistocene megafauna extinctions (lasting from 50,000 to 10,000 years ago), in which many large mammals – including 81% of megaherbivores – went extinct, a decline attributed at least in part to human (anthropogenic) activities. There continue to be strong debates about the relative importance of anthropogenic factors and climate change, but a recent review concluded that there is little evidence for a major role of climate change and "strong" evidence for human activities as the principal driver. Examples from regions such as New Zealand, Madagascar, and Hawaii have shown how human colonization and habitat destruction have led to significant biodiversity losses.

View the full Wikipedia page for Holocene extinction
↑ Return to Menu

Amphibian in the context of Terrestrial animal

Terrestrial animals are animals that live predominantly or entirely on land (e.g., cats, chickens, ants, most spiders), as compared with aquatic animals (e.g., fish, whales, octopuses, lobsters, etc.), who live predominantly or entirely in bodies of water; and semiaquatic animals (e.g., crocodilians, seals, platypus and most amphibians), who inhabit coastal, riparian or wetland areas and rely on both aquatic and terrestrial habitats. While most insects (who constitute over half of all known species in the animal kingdom) are terrestrial, some groups, such as mosquitoes and dragonflies, spend their egg and larval stages in water but emerge as fully terrestrial adults (imagos) after completing metamorphosis.

Terrestrial animals conduct respiratory gas exchange directly with the atmosphere, typically via specialized respiratory organs known as lungs, or via cutaneous respiration across the skin. They have also evolved homeostatic features such as impermeable cuticles that can restrict fluid loss, temperature fluctuations and infection, and an excretory system that can filter out nitrogenous waste in the form of urea or uric acid, in contrast to the ammonia-based excretion of aquatic animals. Without the buoyancy of an aqueous environment to support their weight, they have evolved robust skeletons that can hold up their body shape, as well as powerful appendages known as legs or limbs to facilitate terrestrial locomotion, although some perform limbless locomotion using body surface projections such as scales and setae. Some terrestrial animals even have wings or membranes that act as airfoils to generate lift, allowing them to fly and/or glide as airborne animals.

View the full Wikipedia page for Terrestrial animal
↑ Return to Menu

Amphibian in the context of Fisheries management

The management of fisheries is broadly defined as the set of tasks which guide vested parties and managers in the optimal use of aquatic renewable resources, primarily fish. According to the Food and Agriculture Organization of the United Nations (FAO) in the 2001 Guidebook to Fisheries Management there is currently "no clear and generally accepted definitions of fisheries management". Instead, the authors use a working definition, such that fisheries management is:

The goal of fisheries management is to produce sustainable biological, environmental and socioeconomic benefits from renewable aquatic resources. Wild fisheries are classified as renewable when the organisms of interest (e.g., fish, shellfish, amphibians, reptiles and marine mammals) produce an annual biological surplus that with judicious management can be harvested without reducing future productivity. Fishery management employs activities that protect fishery resources so sustainable exploitation is possible, drawing on fisheries science and possibly including the precautionary principle.

View the full Wikipedia page for Fisheries management
↑ Return to Menu

Amphibian in the context of Triassic

The Triassic (/trˈæsɪk/; sometimes symbolized as 🝈) is a geologic period and a stratigraphic system that spans 50.5 million years from the end of the Permian Period 251.902 Ma (million years ago) to the beginning of the Jurassic Period 201.4 Ma. The Triassic Period is the first and shortest geologic period of the Mesozoic Era, and the seventh period of the Phanerozoic Eon. The start and the end of the Triassic Period featured major extinction events.

Chronologically, the Triassic Period is divided into three epochs: (i) the Early Triassic, (ii) the Middle Triassic, and (iii) the Late Triassic. The Triassic Period began after the Permian–Triassic extinction event that much reduced the biosphere of planet Earth. The fossil record of the Triassic Period presents three categories of organisms: (i) animals that survived the Permian–Triassic extinction event, (ii) new animals that briefly flourished in the Triassic biosphere, and (iii) new animals that evolved and dominated the Mesozoic Era. Reptiles, especially archosaurs, were the chief terrestrial vertebrates during this time. A specialized group of archosaurs, called dinosaurs, first appeared in the Late Triassic but did not become dominant until the succeeding Jurassic Period. Archosaurs that became dominant in this period were primarily pseudosuchians, relatives and ancestors of modern crocodilians, while some archosaurs specialized in flight, the first time among vertebrates, becoming the pterosaurs. Therapsids, the dominant vertebrates of the preceding Permian period, saw a brief surge in diversification in the Triassic, with dicynodonts and cynodonts quickly becoming dominant, but they declined throughout the period with the majority becoming extinct by the end. However, the first stem-group mammals (mammaliamorphs), themselves a specialized subgroup of cynodonts, appeared during the Triassic and would survive the extinction event, allowing them to radiate during the Jurassic. Amphibians were primarily represented by the temnospondyls, giant aquatic predators that had survived the end-Permian extinction and saw a new burst of diversification in the Triassic, before going extinct by the end; however, early crown-group lissamphibians (including stem-group frogs, salamanders and caecilians) also became more common during the Triassic and survived the extinction event. The earliest known neopterygian fish, including early holosteans and teleosts, appeared near the beginning of the Triassic, and quickly diversified to become among the dominant groups of fish in both freshwater and marine habitats.

View the full Wikipedia page for Triassic
↑ Return to Menu

Amphibian in the context of Larva

A larva (/ˈlɑːrvə/; pl.: larvae /ˈlɑːrv/) is a distinct juvenile form many animals undergo before metamorphosis into their next life stage. Animals with indirect development such as insects, some arachnids, amphibians, or cnidarians typically have a larval phase of their life cycle.

A larva's appearance is generally very different from the adult form (e.g. caterpillars and butterflies) including different unique structures and organs that do not occur in the adult form. Their diet may also be considerably different. In the case of smaller primitive arachnids, the larval stage differs by having three instead of four pairs of legs.

View the full Wikipedia page for Larva
↑ Return to Menu

Amphibian in the context of Egg (food)

Humans and other hominids have consumed eggs for millions of years. The most widely consumed eggs are those of fowl, especially chickens. People in Southeast Asia began harvesting chicken eggs for food by 1500 BCE. Eggs of other birds, such as ducks and ostriches, are eaten regularly but much less commonly than those of chickens. People may also eat the eggs of reptiles, amphibians, and fish. Fish eggs consumed as food are known as roe or caviar.

Hens and other egg-laying creatures are raised throughout the world, and mass production of chicken eggs is a global industry. In 2009, an estimated 62.1 million metric tons of eggs were produced worldwide from a total laying flock of approximately 6.4 billion hens. There are issues of regional variation in demand and expectation, as well as current debates concerning methods of mass production. In 2012, the European Union banned battery husbandry of chickens.

View the full Wikipedia page for Egg (food)
↑ Return to Menu

Amphibian in the context of Reptile

Reptiles, as commonly defined, are a group of tetrapods with an ectothermic metabolism and amniotic development. Living traditional reptiles comprise four orders: Testudines, Crocodilia, Squamata, and Rhynchocephalia. About 12,000 living species of reptiles are listed in the Reptile Database. The study of the traditional reptile orders, customarily in combination with the study of modern amphibians, is called herpetology.

Reptiles have been subject to several conflicting taxonomic definitions. In evolutionary taxonomy, reptiles are gathered together under the class Reptilia (/rɛpˈtɪliə/ rep-TIL-ee-ə), which corresponds to common usage. Modern cladistic taxonomy regards that group as paraphyletic, since genetic and paleontological evidence has determined that crocodilians are more closely related to birds (class Aves), members of Dinosauria, than to other living reptiles, and thus birds are nested among reptiles from a phylogenetic perspective. Many cladistic systems therefore redefine Reptilia as a clade (monophyletic group) including birds, though the precise definition of this clade varies between authors. A similar concept is clade Sauropsida, which refers to all amniotes more closely related to modern reptiles than to mammals.

View the full Wikipedia page for Reptile
↑ Return to Menu

Amphibian in the context of Metamorphosis

Metamorphosis is a biological process by which an animal physically develops including birth transformation or hatching, involving a conspicuous and relatively abrupt change in the animal's body structure through cell growth and differentiation. Some insects, fish, amphibians, mollusks, crustaceans, cnidarians, echinoderms, and tunicates undergo metamorphosis, which is often accompanied by a change of nutrition source or behavior. Animals can be divided into species that undergo complete metamorphosis ("holometaboly"), incomplete metamorphosis ("hemimetaboly"), or no metamorphosis ("ametaboly").

Generally organisms with a larval stage undergo metamorphosis, and during metamorphosis the organism loses larval characteristics.

View the full Wikipedia page for Metamorphosis
↑ Return to Menu

Amphibian in the context of Great American Interchange

The Great American Biotic Interchange (commonly abbreviated as GABI), also known as the Great American Interchange and the Great American Faunal Interchange, was an important late Cenozoic paleozoogeographic biotic interchange event in which land and freshwater fauna migrated from North America to South America via Central America and vice versa, as the volcanic Isthmus of Panama rose up from the sea floor, forming a land bridge between the previously separated continents. Although earlier dispersals had occurred, probably over water, the migration accelerated dramatically about 2.7 million years (Ma) ago during the Piacenzian age. It resulted from the joining of the Neotropic (roughly South American) and Nearctic (roughly North American) biogeographic realms definitively to form the Americas. The interchange is visible from observation of both biostratigraphy and nature (neontology). Its most dramatic effect is on the zoogeography of mammals, but it also gave an opportunity for reptiles, amphibians, arthropods, weak-flying or flightless birds, and even freshwater fish to migrate. Coastal and marine biota were affected in the opposite manner; the formation of the Central American Isthmus caused what has been termed the Great American Schism, with significant diversification and extinction occurring as a result of the isolation of the Caribbean from the Pacific.

The occurrence of the interchange was first discussed in 1876 by the "father of biogeography", Alfred Russel Wallace. Wallace had spent five years exploring and collecting specimens in the Amazon basin. Others who made significant contributions to understanding the event in the century that followed include Florentino Ameghino, W. D. Matthew, W. B. Scott, Bryan Patterson, George Gaylord Simpson and S. David Webb. The Pliocene timing of the formation of the connection between North and South America was discussed in 1910 by Henry Fairfield Osborn.

View the full Wikipedia page for Great American Interchange
↑ Return to Menu

Amphibian in the context of Wildlife of Brazil

The wildlife of Brazil comprises all naturally occurring animals, plants, and fungi in Brazil, which is the most biodiverse country in the world. Home to 60% of the Amazon rainforest, which accounts for approximately one-tenth of all species in the world, Brazil has the greatest biodiversity of any country on the planet. It has the most known species of plants (60,000), freshwater fish (3,000), amphibians (1,188), snakes (430), insects (90,000) and mammals (775). Brazil is also the country with the most native species of eatable fruits (over 300).It also ranks third on the list of countries with the most bird species (1,971) and the third with the most reptile species (848). The number of fungal species is unknown (+3,300 species). Approximately two-thirds of all species worldwide are found in tropical areas, often coinciding with developing countries such as Brazil. Brazil is second only to Indonesia as the country with the most endemic species.

View the full Wikipedia page for Wildlife of Brazil
↑ Return to Menu

Amphibian in the context of Vertebrate

Vertebrates (/ˈvɜːrtəbrɪt, -ˌbrt/), also called craniates, are animals with a vertebral column and a cranium. The vertebral column surrounds and protects the spinal cord, while the cranium protects the brain.

The vertebrates make up the subphylum Vertebrata (/ˌvɜːrtəˈbrtə/ VUR-tə-BRAY-tə) with some 65,000 species, by far the largest ranked grouping in the phylum Chordata. The vertebrates include mammals, birds, amphibians, and various classes of fish and reptiles. The fish include the jawless Agnatha, and the jawed Gnathostomata. The jawed fish include both the cartilaginous fish and the bony fish. Bony fish include the lobe-finned fish, which gave rise to the tetrapods, the animals with four limbs. Despite their success, vertebrates still only make up less than five percent of all described animal species.

View the full Wikipedia page for Vertebrate
↑ Return to Menu

Amphibian in the context of Secondarily aquatic tetrapods

Several groups of tetrapods have undergone secondary aquatic adaptation, an evolutionary transition from being purely terrestrial to living at least partly aquatic. These animals are called "secondarily aquatic" because although all tetrapods descended from freshwater lobe finned fish (see evolution of tetrapods), their more recent ancestors are terrestrial vertebrates that evolved on land for hundreds of millions of years, and their clades only re-adapted to aquatic environment much later.

Unlike primarily aquatic vertebrates (i.e. fish), secondarily aquatic tetrapods (especially aquatic amniotes), while having appendages such as flippers, dorsal fin and tail fins (flukes) that resemble fish fins due to convergent evolution, still have physiology based on their terrestrial ancestry, most notably their air-breathing respiration via lungs (instead of aquatic respiration via gills) and excretion of nitrogenous waste as urea or uric acid (instead of ammonia like most fish). Nearly all extant aquatic tetrapods are secondarily aquatic, with only larval amphibians (tadpoles) being primarily aquatic with gills, and only some species of paedomorphic mole salamanders (most notably the fully aquatic axolotl) retain the gill-based physiology into adulthood.

View the full Wikipedia page for Secondarily aquatic tetrapods
↑ Return to Menu

Amphibian in the context of Semi-aquatic

In biology, being semiaquatic refers to various macro-organisms that live regularly in both aquatic and terrestrial environments. When referring to animals, the term describes those that actively spend part of their daily time in water (in which case they can also be called amphibious), or land animals that have spent at least one life stage (e.g. as eggs or larvae) in aquatic environments. When referring to plants, the term describes land plants whose roots have adapted well to tolerate regular, prolonged submersion in water, as well as emergent and (occasionally) floating-leaved aquatic plants that are only partially immersed in water.

Examples of semiaquatic animals and plants are given below.

View the full Wikipedia page for Semi-aquatic
↑ Return to Menu

Amphibian in the context of Frog

A frog is any member of a diverse and largely semiaquatic group of short-bodied, tailless amphibian vertebrates composing the order Anura (coming from the Ancient Greek ἀνούρα, literally 'without tail'). Frog species with rough skin texture due to wart-like parotoid glands tend to be called toads, but the distinction between frogs and toads is informal and purely cosmetic, not from taxonomy or evolutionary history.

Frogs are widely distributed, ranging from the tropics to subarctic regions, but the greatest concentration of species diversity is in tropical rainforest and associated wetlands. They account for around 88% of extant amphibian species, and are one of the five most diverse vertebrate orders. The oldest fossil "proto-frog" Triadobatrachus is known from the Early Triassic of Madagascar (250 million years ago), but molecular clock dating suggests their divergence from other amphibians may extend further back to the Permian, 265 million years ago.

View the full Wikipedia page for Frog
↑ Return to Menu

Amphibian in the context of Evolution of tetrapods

The evolution of tetrapods began about 400 million years ago in the Devonian Period with the earliest tetrapods evolved from lobe-finned fishes. Tetrapods (under the apomorphy-based definition used on this page) are categorized as animals in the biological superclass Tetrapoda, which includes all living and extinct amphibians, reptiles, birds, and mammals. While most species today are terrestrial, little evidence supports the idea that any of the earliest tetrapods could move about on land, as their limbs could not have held their midsections off the ground and the known trackways do not indicate they dragged their bellies around. Presumably, the tracks were made by animals walking along the bottoms of shallow bodies of water. The specific aquatic ancestors of the tetrapods, and the process by which land colonization occurred, remain unclear. They are areas of active research and debate among palaeontologists at present.

Most amphibians today remain semiaquatic, living the first stage of their lives as fish-like tadpoles. Several groups of tetrapods, such as the snakes and cetaceans, have lost some or all of their limbs. In addition, many tetrapods have returned to partially aquatic or fully aquatic lives throughout the history of the group (modern examples of fully aquatic tetrapods include cetaceans and sirenians). The first returns to an aquatic lifestyle may have occurred as early as the Carboniferous Period whereas other returns occurred as recently as the Cenozoic, as in cetaceans, pinnipeds, and several modern amphibians.

View the full Wikipedia page for Evolution of tetrapods
↑ Return to Menu