Algorithm in the context of Numerical integration


Algorithm in the context of Numerical integration

Algorithm Study page number 1 of 11

Play TriviaQuestions Online!

or

Skip to study material about Algorithm in the context of "Numerical integration"


⭐ Core Definition: Algorithm

In mathematics and computer science, an algorithm (/ˈælɡərɪðəm/ ) is a finite sequence of mathematically rigorous instructions, typically used to solve a class of specific problems or to perform a computation. Algorithms are used as specifications for performing calculations and data processing. More advanced algorithms can use conditionals to divert the code execution through various routes (referred to as automated decision-making) and deduce valid inferences (referred to as automated reasoning).

In contrast, a heuristic is an approach to solving problems without well-defined correct or optimal results. For example, although social media recommender systems are commonly called "algorithms", they actually rely on heuristics as there is no truly "correct" recommendation.

↓ Menu
HINT:

In this Dossier

Algorithm in the context of Image processing

Digital image processing is the use of a digital computer to process digital images through an algorithm. As a subcategory or field of digital signal processing, digital image processing has many advantages over analog image processing. It allows a much wider range of algorithms to be applied to the input data and can avoid problems such as the build-up of noise and distortion during processing. Since images are defined over two dimensions (perhaps more), digital image processing may be modeled in the form of multidimensional systems. The generation and development of digital image processing are mainly affected by three factors: first, the development of computers; second, the development of mathematics (especially the creation and improvement of discrete mathematics theory); and third, the demand for a wide range of applications in environment, agriculture, military, industry and medical science has increased.

View the full Wikipedia page for Image processing
↑ Return to Menu

Algorithm in the context of Computer science

Computer science is the study of computation, information, and automation. Included broadly in the sciences, computer science spans theoretical disciplines (such as algorithms, theory of computation, and information theory) to applied disciplines (including the design and implementation of hardware and software). An expert in the field is known as a computer scientist.

Algorithms and data structures are central to computer science.The theory of computation concerns abstract models of computation and general classes of problems that can be solved using them. The fields of cryptography and computer security involve studying the means for secure communication and preventing security vulnerabilities. Computer graphics and computational geometry address the generation of images. Programming language theory considers different ways to describe computational processes, and database theory concerns the management of repositories of data. Human–computer interaction investigates the interfaces through which humans and computers interact, and software engineering focuses on the design and principles behind developing software. Areas such as operating systems, networks and embedded systems investigate the principles and design behind complex systems. Computer architecture describes the construction of computer components and computer-operated equipment. Artificial intelligence and machine learning aim to synthesize goal-orientated processes such as problem-solving, decision-making, environmental adaptation, planning and learning found in humans and animals. Within artificial intelligence, computer vision aims to understand and process image and video data, while natural language processing aims to understand and process textual and linguistic data.

View the full Wikipedia page for Computer science
↑ Return to Menu

Algorithm in the context of Computer programming

Computer programming or coding is the composition of sequences of instructions, called programs, that computers can follow to perform tasks. It involves designing and implementing algorithms, step-by-step specifications of procedures, by writing code in one or more programming languages. Programmers typically use high-level programming languages that are more easily intelligible to humans than machine code, which is directly executed by the central processing unit. Proficient programming usually requires expertise in several different subjects, including knowledge of the application domain, details of programming languages and generic code libraries, specialized algorithms, and formal logic.

Auxiliary tasks accompanying and related to programming include analyzing requirements, testing, debugging (investigating and fixing problems), implementation of build systems, and management of derived artifacts, such as programs' machine code. While these are sometimes considered programming, often the term software development is used for this larger overall process – with the terms programming, implementation, and coding reserved for the writing and editing of code per se. Sometimes software development is known as software engineering, especially when it employs formal methods or follows an engineering design process.

View the full Wikipedia page for Computer programming
↑ Return to Menu

Algorithm in the context of Geospatial analysis

Spatial analysis is any of the formal techniques which study entities using their topological, geometric, or geographic properties, primarily used in urban design. Spatial analysis includes a variety of techniques using different analytic approaches, especially spatial statistics. It may be applied in fields as diverse as astronomy, with its studies of the placement of galaxies in the cosmos, or to chip fabrication engineering, with its use of "place and route" algorithms to build complex wiring structures. In a more restricted sense, spatial analysis is geospatial analysis, the technique applied to structures at the human scale, most notably in the analysis of geographic data. It may also applied to genomics, as in transcriptomics data, but is primarily for spatial data.

Complex issues arise in spatial analysis, many of which are neither clearly defined nor completely resolved, but form the basis for current research. The most fundamental of these is the problem of defining the spatial location of the entities being studied. Classification of the techniques of spatial analysis is difficult because of the large number of different fields of research involved, the different fundamental approaches which can be chosen, and the many forms the data can take.

View the full Wikipedia page for Geospatial analysis
↑ Return to Menu

Algorithm in the context of Euclidean algorithm

In mathematics, the Euclidean algorithm, or Euclid's algorithm, is an efficient method for computing the greatest common divisor (GCD) of two integers, the largest number that divides them both without a remainder. It is named after the ancient Greek mathematician Euclid, who first described it in his Elements (c. 300 BC).It is an example of an algorithm, and is one of the oldest algorithms in common use. It can be used to reduce fractions to their simplest form, and is a part of many other number-theoretic and cryptographic calculations.

The Euclidean algorithm is based on the principle that the greatest common divisor of two numbers does not change if the larger number is replaced by its difference with the smaller number. For example, 21 is the GCD of 252 and 105 (as 252 = 21 × 12 and 105 = 21 × 5), and the same number 21 is also the GCD of 105 and 252 − 105 = 147. Since this replacement reduces the larger of the two numbers, repeating this process gives successively smaller pairs of numbers until the two numbers become equal. When that occurs, that number is the GCD of the original two numbers. By reversing the steps or using the extended Euclidean algorithm, the GCD can be expressed as a linear combination of the two original numbers, that is the sum of the two numbers, each multiplied by an integer (for example, 21 = 5 × 105 + (−2) × 252). The fact that the GCD can always be expressed in this way is known as Bézout's identity.

View the full Wikipedia page for Euclidean algorithm
↑ Return to Menu

Algorithm in the context of Sieve of Eratosthenes

In mathematics, the sieve of Eratosthenes is an ancient algorithm for finding all prime numbers up to any given limit.

It does so by iteratively marking as composite (i.e., not prime) the multiples of each prime, starting with the first prime number, 2. The multiples of a given prime are generated as a sequence of numbers starting from that prime, with constant difference between them that is equal to that prime. This is the sieve's key distinction from using trial division to sequentially test each candidate number for divisibility by each prime. Once all the multiples of each discovered prime have been marked as composites, the remaining unmarked numbers are primes.

View the full Wikipedia page for Sieve of Eratosthenes
↑ Return to Menu

Algorithm in the context of Al-Khwārizmī

Muhammad ibn Musa al-Khwarizmi, or simply al-Khwarizmi (c. 780 – c. 850) was a mathematician active during the Islamic Golden Age, who produced Arabic-language works in mathematics, astronomy, and geography. Around 820, he worked at the House of Wisdom in Baghdad, the contemporary capital city of the Abbasid Caliphate. One of the most prominent scholars of the period, his works were widely influential on later authors, both in the Islamic world and Europe.

His popularizing treatise on algebra, compiled between 813 and 833 as Al-Jabr (The Compendious Book on Calculation by Completion and Balancing), presented the first systematic solution of linear and quadratic equations. One of his achievements in algebra was his demonstration of how to solve quadratic equations by completing the square, for which he provided geometric justifications. Because al-Khwarizmi was the first person to treat algebra as an independent discipline and introduced the methods of "reduction" and "balancing" (the transposition of subtracted terms to the other side of an equation, that is, the cancellation of like terms on opposite sides of the equation), he has been described as the father or founder of algebra. The English term algebra comes from the short-hand title of his aforementioned treatise (الجبر Al-Jabr, transl. "completion" or "rejoining"). His name gave rise to the English terms algorism and algorithm; the Spanish, Italian, and Portuguese terms algoritmo; and the Spanish term guarismo and Portuguese term algarismo, all meaning 'digit'.

View the full Wikipedia page for Al-Khwārizmī
↑ Return to Menu

Algorithm in the context of Path (graph theory)

In graph theory, a path in a graph is a finite or infinite sequence of edges which joins a sequence of vertices which, by most definitions, are all distinct (and since the vertices are distinct, so are the edges). A directed path (sometimes called dipath) in a directed graph is a finite or infinite sequence of edges which joins a sequence of distinct vertices, but with the added restriction that the edges be all directed in the same direction.

Paths are fundamental concepts of graph theory, described in the introductory sections of most graph theory texts. See e.g. Bondy & Murty (1976), Gibbons (1985), or Diestel (2005). Korte et al. (1990) cover more advanced algorithmic topics concerning paths in graphs.

View the full Wikipedia page for Path (graph theory)
↑ Return to Menu

Algorithm in the context of Rational intuition

Logical Intuition, or mathematical intuition or rational intuition, is a series of instinctive foresight, know-how, and savviness often associated with the ability to perceive logical or mathematical truth—and the ability to solve mathematical challenges efficiently. Humans apply logical intuition in proving mathematical theorems, validating logical arguments, developing algorithms and heuristics, and in related contexts where mathematical challenges are involved. The ability to recognize logical or mathematical truth and identify viable methods may vary from person to person, and may even be a result of knowledge and experience, which are subject to cultivation. The ability may not be realizable in a computer program by means other than genetic programming or evolutionary programming.

View the full Wikipedia page for Rational intuition
↑ Return to Menu

Algorithm in the context of 3D modeling

In 3D computer graphics, 3D modeling is the process of developing a mathematical coordinate-based representation of a surface of an object (inanimate or living) in three dimensions via specialized software by manipulating edges, vertices, and polygons in a simulated 3D space.

Three-dimensional (3D) models represent a physical body using a collection of points in 3D space, connected by various geometric entities such as triangles, lines, curved surfaces, etc. Being a collection of data (points and other information), 3D models can be created manually, algorithmically (procedural modeling), or by scanning. Their surfaces may be further defined with texture mapping.

View the full Wikipedia page for 3D modeling
↑ Return to Menu

Algorithm in the context of Discrete mathematics

Discrete mathematics is the study of mathematical structures that can be considered "discrete" (in a way analogous to discrete variables, having a one-to-one correspondence (bijection) with natural numbers), rather than "continuous" (analogously to continuous functions). Objects studied in discrete mathematics include integers, graphs, and statements in logic. By contrast, discrete mathematics excludes topics in "continuous mathematics" such as real numbers, calculus or Euclidean geometry. Discrete objects can often be enumerated by integers; more formally, discrete mathematics has been characterized as the branch of mathematics dealing with countable sets (finite sets or sets with the same cardinality as the natural numbers). However, there is no exact definition of the term "discrete mathematics".

The set of objects studied in discrete mathematics can be finite or infinite. The term finite mathematics is sometimes applied to parts of the field of discrete mathematics that deal with finite sets, particularly those areas relevant to business.

View the full Wikipedia page for Discrete mathematics
↑ Return to Menu

Algorithm in the context of Flowchart

A flowchart is a type of diagram that represents a workflow or process. A flowchart can also be defined as a diagrammatic representation of an algorithm, a step-by-step approach to solving a task.

The flowchart shows the steps as boxes of various kinds, and their order by connecting the boxes with arrows. This diagrammatic representation illustrates a solution model to a given problem. Flowcharts are used in analyzing, designing, documenting or managing a process or program in various fields.

View the full Wikipedia page for Flowchart
↑ Return to Menu

Algorithm in the context of Pattern theory

Pattern theory, formulated by Ulf Grenander, is a mathematical formalism to describe knowledge of the world as patterns. It differs from other approaches to artificial intelligence in that it does not begin by prescribing algorithms and machinery to recognize and classify patterns; rather, it prescribes a vocabulary to articulate and recast the pattern concepts in precise language. Broad in its mathematical coverage, Pattern Theory spans algebra and statistics, as well as local topological and global entropic properties.

In addition to the new algebraic vocabulary, its statistical approach is novel in its aim to:

View the full Wikipedia page for Pattern theory
↑ Return to Menu

Algorithm in the context of Theory of computation

In theoretical computer science and mathematics, the theory of computation is the branch that deals with what problems can be solved on a model of computation using an algorithm, how efficiently they can be solved and to what degree (e.g., approximate solutions versus precise ones). The field is divided into three major branches: automata theory and formal languages, computability theory, and computational complexity theory, which are linked by the question: "What are the fundamental capabilities and limitations of computers?".

In order to perform a rigorous study of computation, computer scientists work with a mathematical abstraction of computers called a model of computation. There are several models in use, but the most commonly examined is the Turing machine. Computer scientists study the Turing machine because it is simple to formulate, can be analyzed and used to prove results, and because it represents what many consider the most powerful possible "reasonable" model of computation (see Church–Turing thesis). It might seem that the potentially infinite memory capacity is an unrealizable attribute, but any decidable problem solved by a Turing machine will always require only a finite amount of memory. So in principle, any problem that can be solved (decided) by a Turing machine can be solved by a computer that has a finite amount of memory.

View the full Wikipedia page for Theory of computation
↑ Return to Menu

Algorithm in the context of Computer scientist

A computer scientist is a scientist who specializes in the academic study of computer science and technology.

Computer scientists typically work on the theoretical side of computation. Although computer scientists can also focus their work and research on specific areas (such as algorithm and data structure development and design, software engineering, information theory, database theory, theoretical computer science, numerical analysis, programming language theory, compiler, computer graphics, computer vision, robotics, computer architecture, operating system), their foundation is the theoretical study of computing from which these other fields derive.

View the full Wikipedia page for Computer scientist
↑ Return to Menu

Algorithm in the context of Models of computation

In computer science, and more specifically in computability theory and computational complexity theory, a model of computation is a model that describes how an output of a mathematical function is computed given an input. A model describes how units of computations, memories, and communications are organized. The computational complexity of an algorithm can be measured given a model of computation. Using a model allows studying the performance of algorithms independently of the variations that are specific to particular implementations and specific technology.

View the full Wikipedia page for Models of computation
↑ Return to Menu

Algorithm in the context of Computational problem

In theoretical computer science, a problem is one that asks for a solution in terms of an algorithm. For example, the problem of factoring

is a computational problem that has a solution, as there are many known integer factorization algorithms. A computational problem can be viewed as a set of instances or cases together with a, possibly empty, set of solutions for every instance/case. The question then is, whether there exists an algorithm that maps instances to solutions. For example, in the factoring problem, the instances are the integers n, and solutions are prime numbers p that are the nontrivial prime factors of n. An example of a computational problem without a solution is the Halting problem. Computational problems are one of the main objects of study in theoretical computer science.

View the full Wikipedia page for Computational problem
↑ Return to Menu

Algorithm in the context of Computational geometry

Computational geometry is a branch of computer science devoted to the study of algorithms that can be stated in terms of geometry. Some purely geometrical problems arise out of the study of computational geometric algorithms, and such problems are also considered to be part of computational geometry. While modern computational geometry is a recent development, it is one of the oldest fields of computing with a history stretching back to antiquity.

Computational complexity is central to computational geometry, with great practical significance if algorithms are used on very large datasets containing tens or hundreds of millions of points. For such sets, the difference between O(n) and O(n log n) may be the difference between days and seconds of computation.

View the full Wikipedia page for Computational geometry
↑ Return to Menu

Algorithm in the context of Foundations of mathematics

Foundations of mathematics are the logical and mathematical framework that allows the development of mathematics without generating self-contradictory theories, and to have reliable concepts of theorems, proofs, algorithms, etc. in particular. This may also include the philosophical study of the relation of this framework with reality.

View the full Wikipedia page for Foundations of mathematics
↑ Return to Menu