Algebraic set in the context of Twisted cubic


Algebraic set in the context of Twisted cubic

Algebraic set Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Algebraic set in the context of "Twisted cubic"


⭐ Core Definition: Algebraic set

Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. Modern definitions generalize this concept in several different ways, while attempting to preserve the geometric intuition behind the original definition.

Conventions regarding the definition of an algebraic variety differ slightly. For example, some definitions require an algebraic variety to be irreducible, which means that it is not the union of two smaller sets that are closed in the Zariski topology. Under this definition, non-irreducible algebraic varieties are called algebraic sets. Other conventions do not require irreducibility.

↓ Menu
HINT:

In this Dossier

Algebraic set in the context of Diophantine equation

In mathematics, a Diophantine equation is a polynomial equation with integer coefficients, for which only integer solutions are of interest. A linear Diophantine equation equates the sum of two or more unknowns, with coefficients, to a constant. An exponential Diophantine equation is one in which unknowns can appear in exponents.

Diophantine problems have fewer equations than unknowns and involve finding integers that solve all equations simultaneously. Because such systems of equations define algebraic curves, algebraic surfaces, or, more generally, algebraic sets, their study is a part of algebraic geometry that is called Diophantine geometry.

View the full Wikipedia page for Diophantine equation
↑ Return to Menu

Algebraic set in the context of Dimension of an algebraic variety

In mathematics and specifically in algebraic geometry, the dimension of an algebraic variety may be defined in various equivalent ways.

Some of these definitions are of geometric nature, while some other are purely algebraic and rely on commutative algebra. Some are restricted to algebraic varieties while others apply also to any algebraic set. Some are intrinsic, as independent of any embedding of the variety into an affine or projective space, while other are related to such an embedding.

View the full Wikipedia page for Dimension of an algebraic variety
↑ Return to Menu

Algebraic set in the context of Degree (algebraic geometry)

In mathematics, the degree of an affine or projective variety of dimension n is the number of intersection points of the varietywith n hyperplanes in general position. For an algebraic set, the intersection points must be counted with their intersection multiplicity, because of the possibility of multiple components. For (irreducible) varieties, if one takes into account the multiplicities and, in the affine case, the points at infinity, the hypothesis of general position may be replaced by the much weaker condition that the intersection of the variety has the dimension zero (that is, consists of a finite number of points). This is a generalization of Bézout's theorem. (For a proof, see Hilbert series and Hilbert polynomial § Degree of a projective variety and Bézout's theorem.)

The degree is not an intrinsic property of the variety, as it depends on a specific embedding of the variety in an affine or projective space.

View the full Wikipedia page for Degree (algebraic geometry)
↑ Return to Menu

Algebraic set in the context of Irreducible component

In algebraic geometry, an irreducible algebraic set or irreducible variety is an algebraic set that cannot be written as the union of two proper algebraic subsets. An irreducible component of an algebraic set is an algebraic subset that is irreducible and maximal (for set inclusion) for this property. For example, the set of solutions of the equation xy = 0 is not irreducible, and its irreducible components are the two lines of equations x = 0 and y = 0.

It is a fundamental theorem of classical algebraic geometry that every algebraic set may be written in a unique way as a finite union of irreducible components.

View the full Wikipedia page for Irreducible component
↑ Return to Menu

Algebraic set in the context of Hilbert's Nullstellensatz

In mathematics, Hilbert's Nullstellensatz (German for "theorem of zeros", or more literally, "zero-locus-theorem") is a theorem that establishes a fundamental relationship between geometry and algebra. This relationship is the basis of algebraic geometry. It relates algebraic sets to ideals in polynomial rings over algebraically closed fields. This relationship was discovered by David Hilbert, who proved the Nullstellensatz in his second major paper on invariant theory in 1893 (following his seminal 1890 paper in which he proved Hilbert's basis theorem).

View the full Wikipedia page for Hilbert's Nullstellensatz
↑ Return to Menu