Algebraic geometry in the context of General position


Algebraic geometry in the context of General position

Algebraic geometry Study page number 1 of 4

Play TriviaQuestions Online!

or

Skip to study material about Algebraic geometry in the context of "General position"


⭐ Core Definition: Algebraic geometry

Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometrical problems. Classically, it studies zeros of multivariate polynomials; the modern approach generalizes this in a few different aspects.

The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscates and Cassini ovals. These are plane algebraic curves. A point of the plane lies on an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of points of special interest like singular points, inflection points and points at infinity. More advanced questions involve the topology of the curve and the relationship between curves defined by different equations.

↓ Menu
HINT:

In this Dossier

Algebraic geometry in the context of Analytic geometry

In mathematics, analytic geometry, also known as coordinate geometry or Cartesian geometry, is the study of geometry using a coordinate system. This contrasts with synthetic geometry.

Analytic geometry is used in physics and engineering, and also in aviation, rocketry, space science, and spaceflight. It is the foundation of most modern fields of geometry, including algebraic, differential, discrete and computational geometry.

View the full Wikipedia page for Analytic geometry
↑ Return to Menu

Algebraic geometry in the context of Diophantine geometry

In mathematics, Diophantine geometry is the study of Diophantine equations by means of powerful methods in algebraic geometry. By the 20th century it became clear for some mathematicians that methods of algebraic geometry are ideal tools to study these equations. Diophantine geometry is part of the broader field of arithmetic geometry.

Four theorems in Diophantine geometry that are of fundamental importance include:

View the full Wikipedia page for Diophantine geometry
↑ Return to Menu

Algebraic geometry in the context of Complex analysis

Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates functions of a complex variable of complex numbers. It is helpful in many branches of mathematics, including real analysis, algebraic geometry, number theory, analytic combinatorics, and applied mathematics, as well as in physics, including the branches of hydrodynamics, thermodynamics, quantum mechanics, and twistor theory. By extension, use of complex analysis also has applications in engineering fields such as nuclear, aerospace, mechanical and electrical engineering.

At first glance, complex analysis is the study of holomorphic functions that are the differentiable functions of a complex variable. By contrast with the real case, a holomorphic functions is always infinitely differentiable and equal to the sum of its Taylor series in some neighborhood of each point of its domain.This makes methods and results of complex analysis significantly different from that of real analysis. In particular, contrarily, with the real case, the domain of every holomorphic function can be uniquely extended to almost the whole complex plane. This implies that the study of real analytic functions needs often the power of complex analysis. This is, in particular, the case in analytic combinatorics.

View the full Wikipedia page for Complex analysis
↑ Return to Menu

Algebraic geometry in the context of Surface (mathematics)

In mathematics, a surface is a mathematical model of the common concept of a surface. It is a generalization of a plane, but, unlike a plane, it may be curved (this is analogous to a curve generalizing a straight line). An example of a non-flat surface is the sphere.

There are several more precise definitions, depending on the context and the mathematical tools that are used for the study. The simplest mathematical surfaces are planes and spheres in the Euclidean 3-space. Typically, in algebraic geometry, a surface may cross itself (and may have other singularities), while, in topology and differential geometry, it may not.

View the full Wikipedia page for Surface (mathematics)
↑ Return to Menu

Algebraic geometry in the context of Algebraic surface

In mathematics, an algebraic surface is an algebraic variety of dimension two. Thus, an algebraic surface is a solution of a set of polynomial equations, in which there are two independent directions at every point. An example of an algebraic surface is the sphere, which is determined by the single polynomial equation Studying the intrinsic geometry of algebraic surfaces is a central topic in algebraic geometry. The theory is much more complicated than for algebraic curves (one-dimensional cases), and was developed substantially by the Italian school of algebraic geometry in the late 19th and early 20th centuries.It remains an active field of research.

In the simplest cases, algebraic surfaces are studied as algebraic varieties over the complex numbers. For example, the familiar sphere (for real ), becomes a complex (affine) quadric surface, which simultaneously incorporates the sphere and hyperboloids of one and two sheets, and this allows some complications (such as the topology: whether the surface is connected, or simply connected) to be deferred somewhat. Higher degree surfaces include, for example, the Kummer surface. The classification of algebraic surfaces is much more intricate than the classification of algebraic curves, which have dimension one, and is already quite complicated.

View the full Wikipedia page for Algebraic surface
↑ Return to Menu

Algebraic geometry in the context of Model theory

In mathematical logic, model theory is the study of the relationship between formal theories (a collection of sentences in a formal language expressing statements about a mathematical structure), and their models (those structures in which the statements of the theory hold). The aspects investigated include the number and size of models of a theory, the relationship of different models to each other, and their interaction with the formal language itself. In particular, model theorists also investigate the sets that can be defined in a model of a theory, and the relationship of such definable sets to each other.As a separate discipline, model theory goes back to Alfred Tarski, who first used the term "Theory of Models" in publication in 1954.Since the 1970s, the subject has been shaped decisively by Saharon Shelah's stability theory.

Compared to other areas of mathematical logic such as proof theory, model theory is often less concerned with formal rigour and closer in spirit to classical mathematics.This has prompted the comment that "if proof theory is about the sacred, then model theory is about the profane".The applications of model theory to algebraic and Diophantine geometry reflect this proximity to classical mathematics, as they often involve an integration of algebraic and model-theoretic results and techniques. Consequently, proof theory is syntactic in nature, in contrast to model theory, which is semantic in nature.

View the full Wikipedia page for Model theory
↑ Return to Menu

Algebraic geometry in the context of One-dimensional space

A one-dimensional space (1D space) is a mathematical space in which location can be specified with a single coordinate. An example is the number line, each point of which is described by a single real number. Any straight line or smooth curve is a one-dimensional space, regardless of the dimension of the ambient space in which the line or curve is embedded. Examples include the circle on a plane, or a parametric space curve.In physical space, a 1D subspace is called a "linear dimension" (rectilinear or curvilinear), with units of length (e.g., metre).

In algebraic geometry there are several structures that are one-dimensional spaces but are usually referred to by more specific terms. Any field is a one-dimensional vector space over itself. The projective line over denoted is a one-dimensional space. In particular, if the field is the complex numbers then the complex projective line is one-dimensional with respect to (but is sometimes called the Riemann sphere, as it is a model of the sphere, two-dimensional with respect to real-number coordinates).

View the full Wikipedia page for One-dimensional space
↑ Return to Menu

Algebraic geometry in the context of Polynomial

In mathematics, a polynomial is a mathematical expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication and exponentiation to nonnegative integer powers, and has a finite number of terms. An example of a polynomial of a single indeterminate is . An example with three indeterminates is .

Polynomials appear in many areas of mathematics and science. For example, they are used to form polynomial equations, which encode a wide range of problems, from elementary word problems to complicated scientific problems; they are used to define polynomial functions, which appear in settings ranging from basic chemistry and physics to economics and social science; and they are used in calculus and numerical analysis to approximate other functions. In advanced mathematics, polynomials are used to construct polynomial rings and algebraic varieties, which are central concepts in algebra and algebraic geometry.

View the full Wikipedia page for Polynomial
↑ Return to Menu

Algebraic geometry in the context of Field (mathematics)

In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics.

The best known fields are the field of rational numbers, the field of real numbers, and the field of complex numbers. Many other fields, such as fields of rational functions, algebraic function fields, algebraic number fields, and p-adic fields are commonly used and studied in mathematics, particularly in number theory and algebraic geometry. Most cryptographic protocols rely on finite fields, i.e., fields with finitely many elements.

View the full Wikipedia page for Field (mathematics)
↑ Return to Menu

Algebraic geometry in the context of Diophantine equation

In mathematics, a Diophantine equation is a polynomial equation with integer coefficients, for which only integer solutions are of interest. A linear Diophantine equation equates the sum of two or more unknowns, with coefficients, to a constant. An exponential Diophantine equation is one in which unknowns can appear in exponents.

Diophantine problems have fewer equations than unknowns and involve finding integers that solve all equations simultaneously. Because such systems of equations define algebraic curves, algebraic surfaces, or, more generally, algebraic sets, their study is a part of algebraic geometry that is called Diophantine geometry.

View the full Wikipedia page for Diophantine equation
↑ Return to Menu

Algebraic geometry in the context of Arithmetic geometry

In mathematics, arithmetic geometry is roughly the application of techniques from algebraic geometry to problems in number theory. Arithmetic geometry is centered around Diophantine geometry, the study of rational points of algebraic varieties.

In more abstract terms, arithmetic geometry can be defined as the study of schemes of finite type over the spectrum of the ring of integers.

View the full Wikipedia page for Arithmetic geometry
↑ Return to Menu

Algebraic geometry in the context of Functions of a complex variable

Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates functions of a complex variable of complex numbers. It is helpful in many branches of mathematics, including real analysis, algebraic geometry, number theory, analytic combinatorics, and applied mathematics, as well as in physics, including the branches of hydrodynamics, thermodynamics, quantum mechanics, and twistor theory. By extension, use of complex analysis also has applications in engineering fields such as nuclear, aerospace, mechanical and electrical engineering.

At first glance, complex analysis is the study of holomorphic functions that are the differentiable functions of a complex variable. By contrast with the real case, a holomorphic function is always infinitely differentiable and equal to the sum of its Taylor series in some neighborhood of each point of its domain.This makes methods and results of complex analysis significantly different from that of real analysis. In particular, contrarily, with the real case, the domain of every holomorphic function can be uniquely extended to almost the whole complex plane. This implies that the study of real analytic functions needs often the power of complex analysis. This is, in particular, the case in analytic combinatorics.

View the full Wikipedia page for Functions of a complex variable
↑ Return to Menu

Algebraic geometry in the context of Projective plane

In mathematics, a projective plane is a geometric structure that extends the concept of a plane. In the ordinary Euclidean plane, two lines typically intersect at a single point, but there are some pairs of lines (namely, parallel lines) that do not intersect. A projective plane can be thought of as an ordinary plane equipped with additional "points at infinity" where parallel lines intersect. Thus any two distinct lines in a projective plane intersect at exactly one point.

Renaissance artists, in developing the techniques of drawing in perspective, laid the groundwork for this mathematical topic. The archetypical example is the real projective plane, also known as the extended Euclidean plane. This example, in slightly different guises, is important in algebraic geometry, topology and projective geometry where it may be denoted variously by PG(2, R), RP, or P2(R), among other notations. There are many other projective planes, both infinite, such as the complex projective plane, and finite, such as the Fano plane.

View the full Wikipedia page for Projective plane
↑ Return to Menu

Algebraic geometry in the context of Henri Poincaré

Jules Henri Poincaré (UK: /ˈpwæ̃kɑːr/, US: /ˌpwæ̃kɑːˈr/; French: [ɑ̃ʁi pwɛ̃kaʁe] ; 29 April 1854 – 17 July 1912) was a French mathematician, theoretical physicist, engineer, and philosopher of science. He is often described as a polymath, and in mathematics as "The Last Universalist", since he excelled in all fields of the discipline as it existed during his lifetime. He has further been called "the Gauss of modern mathematics". Due to his success in science, along with his influence and philosophy, he has further been called "the philosopher par excellence of modern science".

As a mathematician and physicist, he made many original fundamental contributions to pure and applied mathematics, mathematical physics, and celestial mechanics. In his research on the three-body problem, Poincaré became the first person to discover a chaotic deterministic system which laid the foundations of modern chaos theory. Poincaré is regarded as the creator of the field of algebraic topology, and is further credited with introducing automorphic forms. He also made important contributions to algebraic geometry, number theory, complex analysis and Lie theory. He famously introduced the concept of the Poincaré recurrence theorem, which states that a state will eventually return arbitrarily close to its initial state after a sufficiently long time, which has far-reaching consequences. Early in the 20th century he formulated the Poincaré conjecture, which became, over time, one of the famous unsolved problems in mathematics. It was eventually solved in 2002–2003 by Grigori Perelman. Poincaré popularized the use of non-Euclidean geometry in mathematics as well.

View the full Wikipedia page for Henri Poincaré
↑ Return to Menu

Algebraic geometry in the context of Moduli (physics)

In quantum field theory, the term moduli (sg.: modulus; more properly moduli fields) is sometimes used to refer to scalar fields whose potential energy function has continuous families of global minima. Such potential functions frequently occur in supersymmetric systems. The term "modulus" is borrowed from mathematics (or more specifically, moduli space is borrowed from algebraic geometry), where it is used synonymously with "parameter". The word moduli (Moduln in German) first appeared in 1857 in Bernhard Riemann's celebrated paper "Theorie der Abel'schen Functionen".

View the full Wikipedia page for Moduli (physics)
↑ Return to Menu

Algebraic geometry in the context of Algebraic variety

Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. Modern definitions generalize this concept in several different ways, while attempting to preserve the geometric intuition behind the original definition.

Conventions regarding the definition of an algebraic variety differ slightly. For example, some definitions require an algebraic variety to be irreducible, which means that it is not the union of two smaller sets that are closed in the Zariski topology. Under this definition, non-irreducible algebraic varieties are called algebraic sets. Other conventions do not require irreducibility.

View the full Wikipedia page for Algebraic variety
↑ Return to Menu

Algebraic geometry in the context of Singular point of an algebraic variety

In the mathematical field of algebraic geometry, a singular point of an algebraic variety V is a point P that is 'special' (so, singular), in the geometric sense that at this point the tangent space at the variety may not be regularly defined. In case of varieties defined over the reals, this notion generalizes the notion of local non-flatness. A point of an algebraic variety that is not singular is said to be regular. An algebraic variety that has no singular point is said to be non-singular or smooth. The concept is generalized to smooth schemes in the modern language of scheme theory.

View the full Wikipedia page for Singular point of an algebraic variety
↑ Return to Menu