Air mass in the context of "Freezing rain"

Play Trivia Questions online!

or

Skip to study material about Air mass in the context of "Freezing rain"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Air mass in the context of Middle latitudes

The middle latitudes, also called the mid-latitudes (sometimes spelled midlatitudes) or moderate latitudes, are spatial regions on either hemisphere of Earth, located between the Tropic of Cancer (latitude 23°26′09.3″) and the Arctic Circle (66°33′50.7″) in the Northern Hemisphere and between the Tropic of Capricorn (-23°26′09.3″) and the Antarctic Circle (-66°33′50.7″) in the Southern Hemisphere. They include Earth's subtropical and temperate zones, which lie between the two tropics and the polar circles. Weather fronts and extratropical cyclones are usually found in this area, as well as occasional tropical cyclones or subtropical cyclones, which have traveled from their areas of formation closer to the Equator.

The prevailing winds in the middle latitudes are often very strong. These parts of the world also see a wide variety of fast-changing weather as cold air masses from the poles and warm air masses from the tropics constantly push up and down over them against each other, sometimes alternating within hours of each other, especially in the roaring forties (latitudes between 40° and 50° in both hemispheres), even though the winds on the Northern Hemisphere are not as strong as in the Southern Hemisphere, due to the large landmasses of North America, Europe and Asia.

↑ Return to Menu

Air mass in the context of Rain

Rain is a form of precipitation where water droplets that have condensed from atmospheric water vapor fall by gravity. Rain is a major component of the water cycle and is responsible for depositing most of the fresh water on the Earth. It provides water for hydroelectric power plants, crop irrigation, and suitable conditions for many types of ecosystems.

The major cause of rain production is moisture moving along three-dimensional zones of temperature and moisture contrasts known as weather fronts. If enough moisture and upward motion is present, precipitation falls from convective clouds (those with strong upward vertical motion) such as cumulonimbus (thunder clouds) which can organize into narrow rainbands. In mountainous areas, heavy precipitation is possible where upslope flow is maximized within windward sides of the terrain at elevation which forces moist air to condense and fall out as rainfall along the sides of mountains. On the leeward side of mountains, desert climates can exist due to the dry air caused by downslope flow which causes heating and drying of the air mass. The movement of the monsoon trough, or Intertropical Convergence Zone, brings rainy seasons to savannah climes.

↑ Return to Menu

Air mass in the context of Sea surface temperature

Sea surface temperature (or ocean surface temperature) is the temperature of ocean water close to the surface. The exact meaning of surface varies in the literature and in practice. It is usually between 1 millimetre (0.04 in) and 20 metres (70 ft) below the sea surface. Sea surface temperatures greatly modify air masses in the Earth's atmosphere within a short distance of the shore. The thermohaline circulation has a major impact on average sea surface temperature throughout most of the world's oceans.

Warm sea surface temperatures can develop and strengthen cyclones over the ocean. Tropical cyclones can also cause a cool wake. This is due to turbulent mixing of the upper 30 metres (100 ft) of the ocean. Sea surface temperature changes during the day. This is like the air above it, but to a lesser degree. There is less variation in sea surface temperature on breezy days than on calm days.

↑ Return to Menu

Air mass in the context of Climate region

Climate zones are systems that categorize the world's climates. A climate classification may correlate closely with a biome classification, as climate is a major influence on life in a region. The most used is the Köppen climate classification scheme first developed in 1884.

There are several ways to classify climates into similar regimes. Originally, climes were defined in Ancient Greece to describe the weather depending upon a location's latitude. Modern climate classification methods can be broadly divided into genetic methods, which focus on the causes of climate, and empiric methods, which focus on the effects of climate. Examples of genetic classification include methods based on the relative frequency of different air mass types or locations within synoptic weather disturbances. Examples of empiric classifications include climate zones defined by plant hardiness, evapotranspiration, or associations with certain biomes, as in the case of the Köppen climate classification. A common shortcoming of these classification schemes is that they produce distinct boundaries between the zones they define, rather than the gradual transition of climate properties more common in nature.

↑ Return to Menu

Air mass in the context of Cyclone

In meteorology, a cyclone (/ˈs.kln/) is a large air mass that rotates around a strong center of low atmospheric pressure, counterclockwise in the Northern Hemisphere and clockwise in the Southern Hemisphere as viewed from above (opposite to an anticyclone). Cyclones are characterized by inward-spiraling winds that rotate about a zone of low pressure.

Cyclones have also been seen on planets other than the Earth, such as Mars, Jupiter, and Neptune. Cyclogenesis is the process of cyclone formation and intensification.

↑ Return to Menu

Air mass in the context of Spatial Synoptic Classification system

Based upon the Bergeron air mass classification scheme is the Spatial Synoptic Classification system, or SSC. There are six categories within the SSC scheme: Dry Polar (similar to continental polar), Dry Moderate (similar to maritime superior), Dry Tropical (similar to continental tropical), Moist Polar (similar to maritime polar), Moist Moderate (a hybrid between maritime polar and maritime tropical), and Moist Tropical (similar to maritime tropical, maritime monsoon, or maritime equatorial).

The SSC was originally created in the 1950s to improve weather forecasting, and by the 1970s was a widely accepted classification system for climatologists. The initial iteration of the SSC had a major limitation: it could only classify weather types during summer and winter season.

↑ Return to Menu

Air mass in the context of Stationary front

A stationary front (or quasi-stationary front) is a weather front or transition zone between two air masses when each air mass is advancing into the other at speeds less than 5 knots (about 6 miles per hour or about 9 kilometers per hour) at the ground surface. These fronts are typically depicted on weather maps as a solid line with alternating blue spikes (pointing toward the warmer air) and red domes (facing the colder air).

↑ Return to Menu

Air mass in the context of Lake-effect snow

Lake-effect snow is produced during cooler atmospheric conditions when a cold air mass moves across long expanses of warmer lake water. The lower layer of air, heated by the lake water, picks up water vapor from the lake and rises through colder air. The vapor then freezes and is deposited on the leeward (downwind) shores.

The same effect also occurs over bodies of saline water, when it is termed ocean-effect or bay-effect snow. The effect is enhanced when the moving air mass is uplifted by the orographic influence of higher elevations on the downwind shores. This uplifting can produce narrow but very intense bands of precipitation, which deposit at a rate of many inches of snow each hour, often resulting in a large amount of total snowfall.

↑ Return to Menu