Aerodynamic heating in the context of "Blunt body"

Play Trivia Questions online!

or

Skip to study material about Aerodynamic heating in the context of "Blunt body"

Ad spacer

⭐ Core Definition: Aerodynamic heating

Aerodynamic heating is the heating of a solid body produced by its high-speed passage through air. In science and engineering, an understanding of aerodynamic heating is necessary for predicting the behaviour of meteoroids which enter the Earth's atmosphere, to ensure spacecraft safely survive atmospheric reentry, and for the design of high-speed aircraft and missiles.

"For high speed aircraft and missiles aerodynamic heating is the conversion of kinetic energy into heat energy as a result of their relative motion in stationary air and the subsequent transfer through the skin into the structure and interior of the vehicle. Some heat is produced by fluid compression at and near stagnation points such as the vehicle nose and wing leading edges. Additional heat is generated from air friction along the skin inside the boundary layer". These two regions of skin heating are shown by van Driest. Boundary layer heating of the skin may be known as kinetic heating.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Aerodynamic heating in the context of Atmospheric entry

Atmospheric entry (sometimes listed as Vimpact or Ventry) is the movement of an object from outer space into and through the gases of an atmosphere of a planet, dwarf planet, or natural satellite. Atmospheric entry may be uncontrolled entry, as in the entry of astronomical objects, space debris, or bolides. It may be controlled entry (or reentry) of a spacecraft that can be navigated or follow a predetermined course. Methods for controlled atmospheric entry, descent, and landing of spacecraft are collectively termed as EDL.

Objects entering an atmosphere experience atmospheric drag, which puts mechanical stress on the object, and aerodynamic heating—caused mostly by compression of the air in front of the object, but also by drag. These forces can cause loss of mass (ablation) or even complete disintegration of smaller objects, and objects with lower compressive strength can explode.

↑ Return to Menu