Aegean Sea plate in the context of "African Plate"

Play Trivia Questions online!

or

Skip to study material about Aegean Sea plate in the context of "African Plate"

Ad spacer

⭐ Core Definition: Aegean Sea plate

The Aegean Sea plate (also called the Hellenic plate or Aegean plate) is a small tectonic plate located in the Eastern Mediterranean under Southern Greece and western Turkey. Its southern edge is the Hellenic subduction zone south of Crete, where the African plate is being swept under the Aegean Sea plate. Its northern margin is a divergent boundary with the Eurasian plate.

The seafloor in this region is about 350 m below sea level, while the adjacent Black Sea and Mediterranean Sea are 1300–1500 m deep. For this reason it is considered a high plateau between the seas. Evidence suggests the Aegean plate contains thinned continental crust, rather than oceanic crust. Since its creation the crust has been thinned through various processes, including post-orogenic collapse and crustal extension. This extension is responsible for the formation of the Gulf of Corinth.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Aegean Sea plate in the context of South Aegean Volcanic Arc

The South Aegean Volcanic Arc is a volcanic arc in the South Aegean Sea formed by plate tectonics. The prior cause was the subduction of the African plate beneath the Eurasian plate, raising the Aegean arc across what is now the North Aegean Sea. In the Holocene, the process of back-arc extension began, probably stimulated by pressure from the Arabian plate compressing the region behind the arc. The extension deformed the region into its current configuration. First, the arc moved to the south and assumed its arcuate configuration. Second, the Aegean Sea opened behind the arc because the crust was thinned and weakened there. Third, magma broke through the thinned crust to form a second arc composed of a volcanic chain. And finally, the Aegean Sea plate broke away from Eurasia in the new fault zone to the north.

The extension is still ongoing. The current southern Aegean is one of the most rapidly deforming regions of the Himalayan-Alpine mountain belt. It is approximately 450 km long and 20 km to 40 km wide and runs from the Isthmus of Corinth on the Greek mainland to the Bodrum peninsula on the Turkish mainland.

↑ Return to Menu

Aegean Sea plate in the context of African plate

The African plate, also known as the Nubian plate, is a major tectonic plate that includes most of the continent of Africa (except for its easternmost part) and the adjacent oceanic crust to the west and south. It also includes a narrow strip of Western Asia along the Mediterranean Sea, including much of Israel and Lebanon. It is bounded by the North American plate and South American plate to the west (separated by the Mid-Atlantic Ridge); the Arabian plate and Somali plate to the east; the Eurasian plate, Aegean Sea plate and Anatolian plate to the north; and the Antarctic plate to the south.

Between 60 million years ago and 10 million years ago, the Somali plate began rifting from the African plate along the East African Rift. Since the continent of Africa consists of crust from both the African and the Somali plates, some literature refers to the African plate as the Nubian plate to distinguish it from the continent as a whole.

↑ Return to Menu

Aegean Sea plate in the context of Aegean arc

The Hellenic arc or Aegean arc is an arcuate mountain chain of the southern Aegean Sea located on the southern margin of the Aegean Sea plate. Geologically it results from the subduction of the African plate under it along the Hellenic subduction zone. The Hellenic Trench trends parallel to its southern side. The Aegean Sea plate, a microplate, is often considered part of the Eurasian plate from which it is in the process of diverging. The arc itself is mainly marine, the mountaintops appearing as islands in the Ionian Sea, Crete and its environs, or in the Dodecanese group. It encroaches on mainland terrain in the Peloponnesus, on Crete, on Rhodes, and on the southern coast of Anatolia, thus being encompassed by both Greece and Turkey.

The direction of subduction is northward. Locations on the arc or near it on the north side are therefore called "outer" as they are at the outer margin of the plate. Locations further north are "inner." Generally the motion of subduction is from outer to inner. It so happens that, due to back-arc extension, the Hellenic Arc and Trench are moving in the reverse direction, from inner to outer, accounting for the severe arcuate form. There are in essence two layers at the subduction zone, a bottom one moving from outer to inner, and a top one moving from inner to outer.

↑ Return to Menu

Aegean Sea plate in the context of Hellenic subduction zone

The Hellenic subduction zone (HSZ) is the convergent boundary between the African plate and the Aegean Sea plate, where oceanic crust of the African continent is being subducted north–northeastwards beneath the Aegean. The southernmost and shallowest part of the zone is obscured beneath the deformed thick sedimentary sequence that forms the Mediterranean Ridge accretionary complex. It has a well-defined Wadati–Benioff zone of seismicity, which demonstrates the relatively shallow dip of its southern part, which increases markedly to the north of the non-volcanic part of the Hellenic arc. The descending slab has been imaged using seismic tomography down to the top of the mantle transition zone at 410 km depth.

↑ Return to Menu

Aegean Sea plate in the context of Hellenic Trench

The Hellenic Trench (HT) is an oceanic trough located in the forearc of the Hellenic arc, an arcuate archipelago on the southern margin of the Aegean Sea plate, or Aegean Plate, also called Aegea, the basement of the Aegean Sea. The HT begins in the Ionian Sea near the mouth of the Gulf of Corinth and curves to the south, following the margin of the Aegean Sea. It passes close to the south shore of Crete and ends near the island of Rhodes just offshore Anatolia.

In the classical theory of its origin the HT is an oceanic trench containing the Hellenic subduction zone, directly related to the subduction of the African plate under the Eurasian plate. Alternate views developed later on additional data question the classical view postulating that the HT may be the result wholly or partially of back-arc extension and slab rollback. The "partial" view hypothesizes that the western leg of the HT, Ionian Sea east to eastern Crete, exhibits the line of subduction and therefore is an oceanic trench. The "not at all" view, relying on the theory that the subduction line is under or south of the Mediterranean Ridge, questions whether any of the HT is currently subductional. If not, it is merely a legacy, a remnant of a previous subduction zone that has gone elsewhere.

↑ Return to Menu