Additive map in the context of Cauchy's functional equation


Additive map in the context of Cauchy's functional equation

Additive map Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Additive map in the context of "Cauchy's functional equation"


⭐ Core Definition: Additive map

In algebra, an additive map, -linear map or additive function is a function that preserves the addition operation:for every pair of elements and in the domain of . For example, any linear map is additive. When the domain is the real numbers, this is Cauchy's functional equation. For a specific case of this definition, see additive polynomial.

More formally, an additive map is a -module homomorphism. Since an abelian group is a -module, it may be defined as a group homomorphism between abelian groups.

↓ Menu
HINT:

In this Dossier

Additive map in the context of Superposition principle

The superposition principle, also known as superposition property, states that, for all linear systems, the net response caused by two or more stimuli is the sum of the responses that would have been caused by each stimulus individually. So that if input A produces response X, and input B produces response Y, then input (A + B) produces response (X + Y).

A function that satisfies the superposition principle is called a linear function. Superposition can be defined by two simpler properties: additivity and homogeneityfor scalar a.

View the full Wikipedia page for Superposition principle
↑ Return to Menu

Additive map in the context of Spring (device)

A spring is a device consisting of an elastic but largely rigid material (typically metal) bent or molded into a form (especially a coil) that can return into shape after being compressed, extended or twisted. Springs can store energy when compressed, when extended, and/or when twisted. In everyday use, the term most often refers to coil springs, but there are many different spring designs. Modern springs are typically manufactured from spring steel. An example of a non-metallic spring is the bow, made traditionally of flexible yew wood, which when drawn stores energy to propel an arrow.

When a conventional spring, without stiffness variability features, is compressed or stretched from its resting position, it exerts an opposing force approximately proportional to its change in length (this approximation breaks down for larger deflections). The rate or spring constant of a spring is the change in the force it exerts, divided by the change in deflection of the spring. That is, it is the gradient of the force versus deflection curve. An extension or compression spring's rate is expressed in units of force divided by distance, for example or N/m or lbf/in. A torsion spring is a spring that works by twisting; when it is twisted about its axis by an angle, it produces a torque proportional to the angle. A torsion spring's rate is in units of torque divided by angle, such as N·m/rad or ft·lbf/degree. The inverse of spring rate is compliance, that is: if a spring has a rate of 10 N/mm, it has a compliance of 0.1 mm/N. The stiffness (or rate) of springs in parallel is additive, as is the compliance of springs in series.

View the full Wikipedia page for Spring (device)
↑ Return to Menu