Acid–base reaction in the context of "Ammonium chloride"

Play Trivia Questions online!

or

Skip to study material about Acid–base reaction in the context of "Ammonium chloride"

Ad spacer

⭐ Core Definition: Acid–base reaction

In chemistry, an acid–base reaction is a chemical reaction that occurs between an acid and a base. It can be used to determine pH via titration. Several theoretical frameworks provide alternative conceptions of the reaction mechanisms and their application in solving related problems; these are called the acid–base theories, for example, Brønsted–Lowry acid–base theory.

Their importance becomes apparent in analyzing acid–base reactions for gaseous or liquid species, or when acid or base character may be somewhat less apparent. The first of these concepts was provided by the French chemist Antoine Lavoisier, around 1776.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Acid–base reaction in the context of Acid

An acid is a molecule or ion capable of either donating a proton (i.e. hydrogen cation, H), known as a Brønsted–Lowry acid, or forming a covalent bond with an electron pair, known as a Lewis acid.

The first category of acids are the proton donors, or Brønsted–Lowry acids. In the special case of aqueous solutions, proton donors form the hydronium ion H3O and are known as Arrhenius acids. Brønsted and Lowry generalized the Arrhenius theory to include non-aqueous solvents. A Brønsted–Lowry or Arrhenius acid usually contains a hydrogen atom bonded to a chemical structure that is still energetically favorable after loss of H.

↑ Return to Menu

Acid–base reaction in the context of Base (chemistry)

In chemistry, there are three definitions in common use of the word "base": Arrhenius bases, Brønsted bases, and Lewis bases. All definitions agree that bases are substances that react with acids, as originally proposed by G.-F. Rouelle in the mid-18th century.

In 1884, Svante Arrhenius proposed that a base is a substance which dissociates in aqueous solution to form hydroxide ions OH. These ions can react with hydrogen ions (H according to Arrhenius) from the dissociation of acids to form water in an acid–base reaction. A base was therefore a metal hydroxide such as NaOH or Ca(OH)2. Such aqueous hydroxide solutions were also described by certain characteristic properties. They are slippery to the touch, can taste bitter and change the color of pH indicators (e.g., turn red litmus paper blue).

↑ Return to Menu

Acid–base reaction in the context of Amphoterism

In chemistry, an amphoteric compound (from Greek amphoteros 'both') is a molecule or ion that can react both as an acid and as a base. What exactly this can mean depends on which definitions of acids and bases are being used.

↑ Return to Menu

Acid–base reaction in the context of Baking powder

Baking powder is a dry chemical leavening agent, a mixture of a carbonate or bicarbonate and a weak acid. The base and acid are prevented from reacting prematurely by the inclusion of a buffer such as cornstarch. Baking powder is used to increase the volume and lighten the texture of baked goods. It works by releasing carbon dioxide gas into a batter or dough through an acid–base reaction, causing bubbles in the wet mixture to expand and thus leavening the mixture.

The first single-acting baking powder (meaning that it releases all of its carbon dioxide as soon as it is dampened) was developed by food manufacturer Alfred Bird in England in 1843. The first double-acting baking powder, which releases some carbon dioxide when dampened and later releases more of the gas when heated by baking, was developed by Eben Norton Horsford in the U.S. in the 1860s.

↑ Return to Menu

Acid–base reaction in the context of Brønsted–Lowry acid–base theory

The Brønsted–Lowry theory (also called proton theory of acids and bases) is an acid–base reaction theory, developed independently in 1923 by physical chemists Johannes Nicolaus Brønsted (in Denmark) and Thomas Martin Lowry (in the United Kingdom). The basic concept of this theory is that when an acid and a base react with each other, the acid forms its conjugate base, and the base forms its conjugate acid by exchange of a proton (the hydrogen cation, or H). This theory generalises the Arrhenius theory.

↑ Return to Menu

Acid–base reaction in the context of Deprotonation

Deprotonation (or dehydronation) is the removal (transfer) of a proton (or hydron, or hydrogen cation), (H) from a Brønsted–Lowry acid in an acid–base reaction. The species formed is the conjugate base of that acid. The complementary process, when a proton is added (transferred) to a Brønsted–Lowry base, is protonation (or hydronation). The species formed is the conjugate acid of that base.

A species that can either accept or donate a proton is referred to as amphiprotic. An example is the H2O (water) molecule, which can gain a proton to form the hydronium ion, H3O, or lose a proton, leaving the hydroxide ion, OH.

↑ Return to Menu