Acid-fastness in the context of "Auramine O"

Play Trivia Questions online!

or

Skip to study material about Acid-fastness in the context of "Auramine O"

Ad spacer

⭐ Core Definition: Acid-fastness

Acid-fastness is a physical property of certain bacteria, protozoa, and eukaryotic cells, as well as some subcellular structures, referring to their resistance to decolorization by acids during laboratory staining procedures. Once stained as part of a sample, these organisms can resist the acid and/or ethanol-based decolorization procedures common in many staining protocols, hence the name acid-fast.

Historically, acid-fast stains were thought to stain lipids of the cells based on the observed charectistics of cell staining under a wide range of conditions, although the results were limited by the tools available, however as early as 1959 there were observations of how nucleic acids were acid fast. Dyes such as carbol fuchsin and auramine O penetrate the cell and bind to DNA and RNA, producing characteristic red or yellow-green fluorescence, respectively. The property of “acid-fastness” therefore reflects the organism’s ability to retain these dyes after acid–alcohol decolorization, a feature determined mainly by the integrity and composition of the outer cell wall rather than by any specific lipid chemistry.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Acid-fastness in the context of Leprosy

Leprosy, also known as Hansen's disease (HD), is a long-term infection by the bacteria Mycobacterium leprae or Mycobacterium lepromatosis. Infection can lead to damage of the nerves, respiratory tract, skin, and eyes. This nerve damage may result in the loss of nociception, which can lead to the loss of parts of a person's extremities from repeated injuries or infection through unnoticed wounds. An infected person may also experience muscle weakness and loss of eyesight. Leprosy symptoms may begin within one year or take 20 years or more.

Leprosy is spread between people, although extensive contact is necessary. Leprosy has a low pathogenicity, and 95% of people who contract or who are exposed to M. leprae do not develop the disease. Spread is likely through a cough or contact with fluid from the nose of a person infected by leprosy. Genetic factors and baseline immune function play a role in how easily a person catches the disease. Leprosy is not spread during pregnancy to the unborn child or through sexual contact. Leprosy occurs more commonly among people living in poverty. There are two main types of the disease—paucibacillary and multibacillary, which differ in the number of bacteria present. A person with paucibacillary disease has five or fewer poorly pigmented, numb skin patches, while a person with multibacillary disease has more than five skin patches. The diagnosis is confirmed by finding acid-fast bacilli in a biopsy of the skin.

↑ Return to Menu

Acid-fastness in the context of Mycobacterium tuberculosis

Mycobacterium tuberculosis (M. tb), also known as Koch's bacillus, is a species of pathogenic bacteria in the family Mycobacteriaceae and the causative agent of tuberculosis.

First discovered in 1882 by Robert Koch, M. tuberculosis has an unusual, waxy coating on its cell surface primarily due to the presence of mycolic acid. This coating makes the cells impervious to Gram staining, and as a result, M. tuberculosis can appear weakly Gram-positive. Acid-fast stains such as Ziehl–Neelsen, or fluorescent stains such as auramine are used instead to identify M. tuberculosis with a microscope. The physiology of M. tuberculosis is highly aerobic and requires high levels of oxygen. Primarily a pathogen of the mammalian respiratory system, it infects the lungs. The most frequently used diagnostic methods for tuberculosis are the tuberculin skin test, acid-fast stain, culture, and polymerase chain reaction.

↑ Return to Menu

Acid-fastness in the context of Mycobacterium leprae

Mycobacterium leprae (also known as the leprosy bacillus or Hansen's bacillus) is oneof the two species of bacteria that cause Hansen's disease (leprosy), a chronic but curable infectious disease that damages the peripheral nerves and targets the skin, eyes, nose, and muscles.

It is an acid-fast, Gram-positive, rod shaped bacterium and an obligate intracellular parasite, which means, unlike its relative Mycobacterium tuberculosis, it cannot be grown in cell-free laboratory media. This is likely due to gene deletion and decay that the genome of the species has experienced via reductive evolution, which has caused the bacterium to depend heavily on its host for nutrients and metabolic intermediates. It has a narrow host range and apart from humans, the only other natural hosts are nine-banded armadillo and red squirrels. The bacteria infect mainly macrophages and Schwann cells, and are typically found congregated as a palisade.

↑ Return to Menu

Acid-fastness in the context of Mycobacterium lepromatosis

Mycobacterium lepromatosis is an aerobic, acid-fast bacillus (AFB), and the second known causative agent of Hansen's disease (leprosy). It was discovered in 2008. Analysis of the 16S rRNA gene confirms that the species is distinct from Mycobacterium leprae.

↑ Return to Menu

Acid-fastness in the context of Ziehl–Neelsen stain

The Ziehl–Neelsen stain, also known as the acid-fast stain, is a bacteriological staining technique used in cytopathology and microbiology to identify acid-fast bacteria under microscopy, particularly members of the Mycobacterium genus. This staining method was initially introduced by Paul Ehrlich (1854–1915) and subsequently modified by the German bacteriologists Franz Ziehl (1859–1926) and Friedrich Neelsen (1854–1898) during the late 19th century.

The acid-fast staining method, in conjunction with auramine phenol staining, serves as the standard diagnostic tool and is widely accessible for rapidly diagnosing tuberculosis (caused by Mycobacterium tuberculosis) and other diseases caused by atypical mycobacteria, such as leprosy (caused by Mycobacterium leprae) and Mycobacterium avium-intracellulare infection (caused by Mycobacterium avium complex) in samples like sputum, gastric washing fluid, and bronchoalveolar lavage fluid. These acid-fast bacteria possess a waxy lipid-rich outer layer that contains high concentrations of mycolic acid, rendering them resistant to conventional staining techniques like the Gram stain.

↑ Return to Menu