Accretion (geology) in the context of Gonâve microplate


Accretion (geology) in the context of Gonâve microplate
HINT:

In this Dossier

Accretion (geology) in the context of North American Plate

The North American plate is a tectonic plate containing most of North America, Cuba, the Bahamas, extreme northeastern Asia, and parts of Iceland and the Azores. With an area of 76 million km (29 million sq mi), it is the Earth's second largest tectonic plate, behind the Pacific plate (which borders the plate to the west).

It extends eastward to the seismically active Mid-Atlantic Ridge at the Azores triple junction plate boundary where it meets the Eurasian plate and Nubian plate.and westward to the Chersky Range in eastern Siberia. The plate includes both continental and oceanic crust. The interior of the main continental landmass includes an extensive granitic core called a craton. Along most of the edges of this craton are fragments of crustal material called terranes, which are accreted to the craton by tectonic actions over a long span of time. Much of North America west of the Rocky Mountains is composed of such terranes.

View the full Wikipedia page for North American Plate
↑ Return to Menu

Accretion (geology) in the context of Gondwana

Gondwana (/ɡɒnˈdwɑːnə/ gond-WAHN-ə; Sanskrit: [goːɳɖɐʋɐnɐ]) was a large landmass, sometimes referred to as a supercontinent. The remnants of Gondwana make up around two-thirds of today's continental area, including South America, Africa, Antarctica, Australia, Zealandia, Arabia, and the Indian subcontinent.

Gondwana was formed by the accretion of several cratons (large stable blocks of the Earth's crust), beginning c. 800 to 650 Ma with the East African Orogeny, the collision of India and Madagascar with East Africa, and culminating in c. 600 to 530 Ma with the overlapping Brasiliano and Kuunga orogenies, the collision of South America with Africa, and the addition of Australia and Antarctica, respectively. Eventually, Gondwana became the largest piece of continental crust of the Paleozoic Era, covering an area of some 100,000,000 km (39,000,000 sq mi), about one-fifth of the Earth's surface. It fused with Laurasia during the Carboniferous to form Pangaea.

View the full Wikipedia page for Gondwana
↑ Return to Menu

Accretion (geology) in the context of Leeward Antilles

The Leeward Antilles (Dutch: Benedenwindse Eilanden; Spanish: islas de Sotavento) are a chain of islands in the Caribbean, specifically part of the southerly islands of the Lesser Antilles (and, in turn, the Antilles and the West Indies) along the southeastern fringe of the Caribbean Sea, just north of the Venezuelan coast of the South American mainland. The Leeward Antilles, while among the Lesser Antilles, are not to be confused with the Leeward Islands (also of the Lesser Antilles) to the northeast.

Largely lacking in volcanic activity, the Leeward Antilles island arc occurs along the deformed southern edge of the Caribbean Plate and was formed by the plate's subduction under the South American Plate. Recent studies indicate that the Leeward Antilles are accreting to South America.

View the full Wikipedia page for Leeward Antilles
↑ Return to Menu

Accretion (geology) in the context of Terrane

In geology, a terrane (/təˈrn, ˈtɛrn/; in full, a tectonostratigraphic terrane) is a crust fragment formed on a tectonic plate (or broken off from it) and accreted or "sutured" to crust lying on another plate. The crustal block or fragment preserves its distinctive geologic history, which is different from the surrounding areas—hence the term "exotic" terrane. The suture zone between a terrane and the crust it attaches to is usually identifiable as a fault. A sedimentary deposit that buries the contact of the terrane with adjacent rock is called an overlap formation. An igneous intrusion that has intruded and obscured the contact of a terrane with adjacent rock is called a stitching pluton.

There is also an older usage of the term terrane, which described a series of related rock formations or an area with a preponderance of a particular rock or rock group.

View the full Wikipedia page for Terrane
↑ Return to Menu

Accretion (geology) in the context of Accretionary wedge

An accretionary wedge or accretionary prism forms from sediments accreted onto the non-subducting tectonic plate at a convergent plate boundary. Most of the material in the accretionary wedge consists of marine sediments scraped off from the downgoing slab of oceanic crust, but in some cases the wedge includes the erosional products of volcanic island arcs formed on the overriding plate.

An accretionary complex is a current (in modern use) or former accretionary wedge. Accretionary complexes are typically made up of a mix of turbidites of terrestrial material, basalts from the ocean floor, and pelagic and hemipelagic sediments. For example, most of the geological basement of Japan is made up of accretionary complexes.

View the full Wikipedia page for Accretionary wedge
↑ Return to Menu

Accretion (geology) in the context of Mantle convection

Mantle convection is the very slow creep of Earth's solid silicate mantle as convection currents carry heat from the interior to the planet's surface. Mantle convection causes tectonic plates to move around the Earth's surface.

The Earth's lithosphere rides atop the asthenosphere, and the two form the components of the upper mantle. The lithosphere is divided into tectonic plates that are continuously being created or consumed at plate boundaries. Accretion occurs as mantle is added to the growing edges of a plate, associated with seafloor spreading. Upwelling beneath the spreading centers is a shallow, rising component of mantle convection and in most cases not directly linked to the global mantle upwelling. The hot material added at spreading centers cools down by conduction and convection of heat as it moves away from the spreading centers. At the consumption edges of the plate, the material has thermally contracted to become dense, and it sinks under its own weight in the process of subduction usually at an oceanic trench. Subduction is the descending component of mantle convection.

View the full Wikipedia page for Mantle convection
↑ Return to Menu

Accretion (geology) in the context of Gonâve Microplate

The Gonâve microplate forms part of the boundary between the North American plate and the Caribbean plate. It is bounded to the west by the Mid-Cayman Rise spreading center, to the north by the Septentrional-Oriente fault zone and to the south by the Walton fault zone and the Enriquillo–Plantain Garden fault zone. The existence of this microplate was first proposed in 1991. This has been confirmed by GPS measurements, which show that the overall displacement between the two main plates is split almost equally between the transform fault zones that bound the Gonâve microplate. The microplate is expected to eventually become accreted to the North American plate.

View the full Wikipedia page for Gonâve Microplate
↑ Return to Menu

Accretion (geology) in the context of Eastern Pilbara craton

The Eastern Pilbara Craton is the eastern portion of the Pilbara Craton located in Western Australia. This region contains variably metamorphosed mafic and ultramafic greenstone belt rocks, intrusive granitic dome structures, and volcanic sedimentary rocks. These greenstone belts worldwide are thought to be the remnants of ancient volcanic belts, and are subject to much debate in today's scientific community. Areas such as Isua and Barberton which have similar lithologies and ages as Pilbara have been argued to be subduction accretion arcs, while others suggest that they are the result of vertical tectonics. This debate is crucial to investigating when/how plate tectonics began on Earth. The Pilbara Craton along with the Kaapvaal Craton are the only remaining areas of the Earth with pristine 3.6–2.5 Ga crust. The extremely old and rare nature of this crustal region makes it a valuable resource in the understanding of the evolution of the Archean Earth.

View the full Wikipedia page for Eastern Pilbara craton
↑ Return to Menu

Accretion (geology) in the context of Rodinia

Rodinia (from the Russian родина, rodina, meaning "motherland, birthplace") was a Mesoproterozoic and Neoproterozoic supercontinent that assembled 1.26–0.90 billion years ago (Ga) and broke up 750–633 million years ago (Ma). Valentine & Moores 1970 were probably the first to recognise a Precambrian supercontinent, which they named "Pangaea I." It was renamed "Rodinia" by McMenamin & McMenamin 1990, who also were the first to produce a plate reconstruction and propose a temporal framework for the supercontinent.

Rodinia formed at c. 1.23 Ga by accretion and collision of fragments produced by breakup of an older supercontinent, Columbia, assembled by global-scale 2.0–1.8 Ga collisional events. Rodinia broke up in the Neoproterozoic, with its continental fragments reassembled to form Pannotia 633–573 Ma. In contrast with Pannotia, little is known about Rodinia's configuration and geodynamic history. Paleomagnetic evidence provides some clues to the paleolatitude of individual pieces of the Earth's crust, but not to their longitude, which geologists have pieced together by comparing similar geologic features, often now widely dispersed.

View the full Wikipedia page for Rodinia
↑ Return to Menu