Abductive reasoning in the context of "Method of reasoning"

Play Trivia Questions online!

or

Skip to study material about Abductive reasoning in the context of "Method of reasoning"

Ad spacer

⭐ Core Definition: Abductive reasoning

Abductive reasoning (also called abduction, abductive inference, or retroduction) is a form of logical inference that seeks the simplest and most likely conclusion from a set of observations. It was formulated and advanced by the American philosopher and logician Charles Sanders Peirce beginning in the latter half of the 19th century.

Abductive reasoning, unlike deductive reasoning, yields a plausible conclusion but does not definitively verify it. Abductive conclusions do not eliminate uncertainty or doubt, which is expressed in terms such as "best available" or "most likely". While inductive reasoning draws general conclusions that apply to many situations, abductive conclusions are confined to the particular observations in question.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Abductive reasoning in the context of Reason

Reason is the capacity of consciously applying logic by drawing valid conclusions from new or existing information, with the aim of seeking truth. It is associated with such characteristically human activities as philosophy, religion, science, language, and mathematics, and is normally considered to be a distinguishing ability possessed by humans. Reason is sometimes referred to as rationality, although the latter is more about its application.

Reasoning involves using more-or-less rational processes of thinking and cognition to extrapolate from one's existing knowledge to generate new knowledge, and involves the use of one's intellect. The field of logic studies the ways in which humans can use formal reasoning to produce logically valid arguments and true conclusions. Reasoning may be subdivided into forms of logical reasoning, such as deductive reasoning, inductive reasoning, and abductive reasoning.

↑ Return to Menu

Abductive reasoning in the context of Scientific theory

A scientific theory is an explanation of an aspect of the natural world that can be or that has been repeatedly tested and has corroborating evidence in accordance with the scientific method, using accepted protocols of observation, measurement, and evaluation of results. Where possible, theories are tested under controlled conditions in an experiment. In circumstances not amenable to experimental testing, theories are evaluated through principles of abductive reasoning. Established scientific theories have withstood rigorous scrutiny and embody scientific knowledge.

A scientific theory differs from a scientific fact: a fact is an observation, while a theory connects and explains multiple observations. Furthermore, a theory is expected to make predictions which could be confirmed or refuted with additional observations. Stephen Jay Gould wrote that "...facts and theories are different things, not rungs in a hierarchy of increasing certainty. Facts are the world's data. Theories are structures of ideas that explain and interpret facts."A theory differs from a scientific law in that a law is an empirical description of a relationship between facts and/or other laws. For example, Newton's Law of Gravity is a mathematical equation that can be used to predict the attraction between bodies, but it is not a theory to explain how gravity works.

↑ Return to Menu

Abductive reasoning in the context of Analogy

Analogy is a comparison or correspondence between two things (or two groups of things) because of a third element that they are considered to share.

Logically, it is an inference or an argument from one particular to another particular, as opposed to deduction, induction, and abduction. It is also used where at least one of the premises, or the conclusion, is general rather than particular in nature. It has the general form A is to B as C is to D.

↑ Return to Menu

Abductive reasoning in the context of Inference

Inferences are steps in logical reasoning, moving from premises to logical consequences; etymologically, the word infer means to "carry forward". Inference is theoretically traditionally divided into deduction and induction, a distinction that in Europe dates at least to Aristotle (300s BC). Deduction is inference deriving logical conclusions from premises known or assumed to be true, with the laws of valid inference being studied in logic. Induction is inference from particular evidence to a universal conclusion. A third type of inference is sometimes distinguished, notably by Charles Sanders Peirce, contradistinguishing abduction from induction.

Various fields study how inference is done in practice. Human inference (i.e. how humans draw conclusions) is traditionally studied within the fields of logic, argumentation studies, and cognitive psychology; artificial intelligence researchers develop automated inference systems to emulate human inference. Statistical inference uses mathematics to draw conclusions in the presence of uncertainty. This generalizes deterministic reasoning, with the absence of uncertainty as a special case. Statistical inference uses quantitative or qualitative (categorical) data which may be subject to random variations.

↑ Return to Menu