A-10 Thunderbolt II in the context of "Twinjet"

Play Trivia Questions online!

or

Skip to study material about A-10 Thunderbolt II in the context of "Twinjet"

Ad spacer

⭐ Core Definition: A-10 Thunderbolt II

The Fairchild Republic A-10 Thunderbolt II, also widely known by the nickname Warthog, is a single-seat, twin-turbofan, straight-wing, subsonic attack aircraft developed by Fairchild Republic for the United States Air Force (USAF). In service since 1977, it is named after the Republic P-47 Thunderbolt strike-fighter of World War II, but is instead commonly referred to as the "Warthog" (sometimes simply "Hog"). The A-10 was designed to provide close air support (CAS) to ground troops by attacking enemy armored vehicles, tanks, and other ground forces; it is the only production-built aircraft designed solely for CAS to have served with the U.S. Air Force. Its secondary mission is to direct other aircraft in attacks on ground targets, a role called forward air controller (FAC)-airborne; aircraft used primarily in this role are designated OA-10.

The A-10 was intended to improve on the performance and firepower of the Douglas A-1 Skyraider. The Thunderbolt II's airframe was designed around the high-power 30 mm GAU-8 Avenger rotary autocannon. The airframe was designed for durability, with measures such as 1,200 pounds (540 kg) of titanium armor to protect the cockpit and aircraft systems, enabling it to absorb damage and continue flying. Its ability to take off and land from relatively short and unpaved runways permits operation from airstrips close to the front lines, and its simple design enables maintenance with minimal facilities.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

A-10 Thunderbolt II in the context of Air-to-surface missile

An air-to-surface missile (ASM) or air-to-ground missile (AGM) is a missile designed to be launched from military aircraft at targets on land or sea. There are also unpowered guided glide bombs not considered missiles. The two most common propulsion systems for air-to-surface missiles are rocket motors, usually with shorter range, and slower, longer-range jet engines. Some Soviet-designed air-to-surface missiles are powered by ramjets, giving them both long range and high speed.

Guidance for air-to-surface missiles is typically via laser guidance, infrared guidance, optical guidance or via satellite guidance signals. The type of guidance depends on the type of target. Ships, for example, may be detected via passive radar or active radar homing, which is less effective against multiple, small, fast-moving land targets.

↑ Return to Menu

A-10 Thunderbolt II in the context of Hardpoint

A hardpoint is an attachment location on a structural frame designed to transfer force and carry an external or internal load. The term is usually used to refer to the mounting points (more formally known as a weapon station or station) on the airframe of military aircraft that carry weapons (e.g. gun pods and rocket pods), ordnances (bombs and missiles) and support equipment (e.g. flares and countermeasures, targeting pods or drop tanks), and also include hardpoints (also known as pylons) on the wings or fuselage of a military transport aircraft, commercial airliner or private jet where external turbofan jet engines are often mounted.

↑ Return to Menu

A-10 Thunderbolt II in the context of Rotary gun

A rotary cannon, rotary autocannon, gatling cannon, or gatling autocannon, is any large-caliber multiple-barreled automatic firearm that uses a Gatling-type rotating barrel assembly to deliver a sustained saturational direct fire at much greater rates of fire than single-barreled autocannons of the same caliber. The loading, firing and ejection functions are performed simultaneously in different barrels as the whole assembly rotates, and the rotation also permits the barrels some time to cool. Rotary cannons, external or self-driven are used in aircraft over reciprocating bolt autocannons which are more prone to jamming in high g environments. The rotating barrels on nearly all modern Gatling-type guns are powered by an external force such as an electric motor, although internally powered gas-operated versions have also been developed.

The cyclic multi-barrel design synchronizes the firing/reloading sequence. Each barrel fires a single cartridge when it reaches a certain position in the rotation, after which the spent casing is ejected at a different position and then a new round is loaded at another position. During the cycle, the barrel has more time to dissipate some heat away to the surrounding air.

↑ Return to Menu