3-dimensional Euclidean space in the context of Mathematical space


3-dimensional Euclidean space in the context of Mathematical space

3-dimensional Euclidean space Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about 3-dimensional Euclidean space in the context of "Mathematical space"


⭐ Core Definition: 3-dimensional Euclidean space

In geometry, a three-dimensional space is a mathematical space in which three values (termed coordinates) are required to determine the position of a point. Alternatively, it can be referred to as 3D space, 3-space or, rarely, tri-dimensional space. Most commonly, it means the three-dimensional Euclidean space, that is, the Euclidean space of dimension three, which models physical space. More general three-dimensional spaces are called 3-manifolds. The term may refer colloquially to a subset of space, a three-dimensional region (or 3D domain), a solid figure.

Technically, a tuple of n numbers can be understood as the Cartesian coordinates of a location in a n-dimensional Euclidean space. The set of these n-tuples is commonly denoted and can be identified to the pair formed by a n-dimensional Euclidean space and a Cartesian coordinate system.When n = 3, this space is called the three-dimensional Euclidean space (or simply "Euclidean space" when the context is clear). In classical physics, it serves as a model of the physical universe, in which all known matter exists. When relativity theory is considered, it can be considered a local subspace of space-time. While this space remains the most compelling and useful way to model the world as it is experienced, it is only one example of a 3-manifold. In this classical example, when the three values refer to measurements in different directions (coordinates), any three directions can be chosen, provided that these directions do not lie in the same plane. Furthermore, if these directions are pairwise perpendicular, the three values are often labeled by the terms width/breadth, height/depth, and length.

↓ Menu
HINT:

In this Dossier

3-dimensional Euclidean space in the context of Metric space

In mathematics, a metric space is a set together with a notion of distance between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are a general setting for studying many of the concepts of mathematical analysis and geometry.

The most familiar example of a metric space is 3-dimensional Euclidean space with its usual notion of distance. Other well-known examples are a sphere equipped with the angular distance and the hyperbolic plane. A metric may correspond to a metaphorical, rather than physical, notion of distance: for example, the set of 100-character Unicode strings can be equipped with the Hamming distance, which measures the number of characters that need to be changed to get from one string to another.

View the full Wikipedia page for Metric space
↑ Return to Menu

3-dimensional Euclidean space in the context of Metric (mathematics)

In mathematics, a metric space is a set together with a notion of distance between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are a general setting for studying many of the concepts of mathematical analysis and geometry.

The most familiar example of a metric space is 3-dimensional Euclidean space with its usual notion of distance. Other well-known examples are a sphere equipped with the angular distance and the hyperbolic plane. A metric may correspond to a metaphorical, rather than physical, notion of distance. For example, the set of 100-character Unicode strings can be equipped with the Hamming distance, which measures the number of characters that need to be changed to get from one string to another.

View the full Wikipedia page for Metric (mathematics)
↑ Return to Menu

3-dimensional Euclidean space in the context of Riemannian metric

In differential geometry, a Riemannian manifold (or Riemann space) is a geometric space on which many geometric notions such as distance, angles, length, volume, and curvature are defined. Euclidean space, the -sphere, hyperbolic space, and smooth surfaces in three-dimensional space, such as ellipsoids and paraboloids, are all examples of Riemannian manifolds. Riemannian manifolds take their name from German mathematician Bernhard Riemann, who first conceptualized them in 1854.

Formally, a Riemannian metric (or just a metric) on a smooth manifold is a smoothly varying choice of inner product for each tangent space of the manifold. A Riemannian manifold is a smooth manifold together with a Riemannian metric. The techniques of differential and integral calculus are used to pull geometric data out of the Riemannian metric. For example, integration leads to the Riemannian distance function, whereas differentiation is used to define curvature and parallel transport.

View the full Wikipedia page for Riemannian metric
↑ Return to Menu