18S rDNA in the context of "16S ribosomal RNA"

Play Trivia Questions online!

or

Skip to study material about 18S rDNA in the context of "16S ribosomal RNA"

Ad spacer

⭐ Core Definition: 18S rDNA

18S ribosomal RNA (abbreviated 18S rRNA) is a part of the ribosomal RNA in eukaryotes. It is a component of the Eukaryotic small ribosomal subunit (40S) and the cytosolic homologue of both the 12S rRNA in mitochondria and the 16S rRNA in plastids and prokaryotes. Similar to the prokaryotic 16S rRNA, the genes of the 18S ribosomal RNA have been widely used for phylogenetic studies and biodiversity screening of eukaryotes.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

18S rDNA in the context of Trebouxiophyceae

The Trebouxiophyceae, also known as trebouxiophytes, are a class of green algae, in the division Chlorophyta. Members of this class are single-celled, colonial, or multicellular and are found in freshwater, terrestrial or marine habitats worldwide. Many taxa in the Trebouxiophyceae form symbiotic relationships with other organisms; in particular, the majority of phycobionts within lichens are trebouxiophytes. A number of taxa have also lost the ability to photosynthesize, and have evolved to become parasitic; examples include Prototheca and Helicosporidium.

Trebouxiophyceae was originally defined by ultrastructural characteristics, but is now generally circumscribed based on phylogenetics, particularly based on the 18S rDNA locus. As of 2024, Trebouxiophyceae contains 211 genera and about 925 species.

↑ Return to Menu

18S rDNA in the context of Nannochloropsis

Nannochloropsis is a genus of algae comprising six known species. The genus in the current taxonomic classification was first termed by Hibberd (1981). The species have mostly been known from the marine environment but also occur in fresh and brackish water. All of the species are small, nonmotile spheres which do not express any distinct morphological features that can be distinguished by either light or electron microscopy. The characterisation is mostly done by rbcL gene and 18S rRNA sequence analysis.

The algae of the genus Nannochloropsis differ from other related microalgae in that they have chlorophyll a and completely lack chlorophyll b and chlorophyll c. In addition they are able to build up a high concentrations of a range of pigments such as astaxanthin, zeaxanthin and canthaxanthin. They have a diameter of about 2 to 3 micrometers and a very simple ultrastructure with reduced structural elements compared to neighbouring taxa.

↑ Return to Menu