Affine transformation in the context of "Projective geometry"

⭐ In the context of projective geometry, affine transformations are considered…

Ad spacer

⭐ Core Definition: Affine transformation

In Euclidean geometry, an affine transformation or affinity (from the Latin, affinis, "connected with") is a geometric transformation that preserves lines and parallelism, but not necessarily Euclidean distances and angles.

More generally, an affine transformation is an automorphism of an affine space (Euclidean spaces are specific affine spaces), that is, a function which maps an affine space onto itself while preserving both the dimension of any affine subspaces (meaning that it sends points to points, lines to lines, planes to planes, and so on) and the ratios of the lengths of parallel line segments. Consequently, sets of parallel affine subspaces remain parallel after an affine transformation. An affine transformation does not necessarily preserve angles between lines or distances between points, though it does preserve ratios of distances between points lying on a straight line.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

πŸ‘‰ Affine transformation in the context of Projective geometry

In mathematics, projective geometry is the study of geometric properties that are invariant with respect to projective transformations. This means that, compared to elementary Euclidean geometry, projective geometry has a different setting (projective space) and a selective set of basic geometric concepts. The basic intuitions are that projective space has more points than Euclidean space, for a given dimension, and that geometric transformations are permitted that transform the extra points (called "points at infinity") to Euclidean points, and vice versa.

Properties meaningful for projective geometry are respected by this new idea of transformation, which is more radical in its effects than can be expressed by a transformation matrix and translations (the affine transformations). The first issue for geometers is what kind of geometry is adequate for a novel situation. Unlike in Euclidean geometry, the concept of an angle does not apply in projective geometry, because no measure of angles is invariant with respect to projective transformations, as is seen in perspective drawing from a changing perspective. One source for projective geometry was indeed the theory of perspective. Another difference from elementary geometry is the way in which parallel lines can be said to meet in a point at infinity, once the concept is translated into projective geometry's terms. Again this notion has an intuitive basis, such as railway tracks meeting at the horizon in a perspective drawing. See Projective plane for the basics of projective geometry in two dimensions.

↓ Explore More Topics
In this Dossier

Affine transformation in the context of Hyperboloid of revolution

In geometry, a hyperboloid of revolution, sometimes called a circular hyperboloid, is the surface generated by rotating a hyperbola around one of its principal axes. A hyperboloid is the surface obtained from a hyperboloid of revolution by deforming it by means of directional scalings, or more generally, of an affine transformation.

A hyperboloid is a quadric surface, that is, a surface defined as the zero set of a polynomial of degree two in three variables. Among quadric surfaces, a hyperboloid is characterized by not being a cone or a cylinder, having a center of symmetry, and intersecting many planes into hyperbolas. A hyperboloid has three pairwise perpendicular axes of symmetry, and three pairwise perpendicular planes of symmetry.

↑ Return to Menu

Affine transformation in the context of Ellipsoid

An ellipsoid is a surface that can be obtained from a sphere by deforming it by means of directional scalings, or more generally, of an affine transformation.

An ellipsoid is a quadric surface;β€Š that is, a surface that may be defined as the zero set of a polynomial of degree two in three variables. Among quadric surfaces, an ellipsoid is characterized by either of the two following properties. Every planar cross section is either an ellipse, or is empty, or is reduced to a single point (this explains the name, meaning "ellipse-like"). It is bounded, which means that it may be enclosed in a sufficiently large sphere.

↑ Return to Menu

Affine transformation in the context of Transformation (function)

In mathematics, a transformation, transform, or self-map is a function f, usually with some geometrical underpinning, that maps a set X to itself, i.e. f: X β†’ X.Examples include linear transformations of vector spaces and geometric transformations, which include projective transformations, affine transformations, and specific affine transformations, such as rotations, reflections and translations.

↑ Return to Menu

Affine transformation in the context of Orthographic projection

Orthographic projection, or orthogonal projection (also analemma), is a means of representing three-dimensional objects in two dimensions. Orthographic projection is a form of parallel projection in which all the projection lines are orthogonal to the projection plane, resulting in every plane of the scene appearing in affine transformation on the viewing surface. The obverse of an orthographic projection is an oblique projection, which is a parallel projection in which the projection lines are not orthogonal to the projection plane.

The term orthographic sometimes means a technique in multiview projection in which principal axes or the planes of the subject are also parallel with the projection plane to create the primary views. If the principal planes or axes of an object in an orthographic projection are not parallel with the projection plane, the depiction is called axonometric or an auxiliary views. (Axonometric projection is synonymous with parallel projection.) Sub-types of primary views include plans, elevations, and sections; sub-types of auxiliary views include isometric, dimetric, and trimetric projections.

↑ Return to Menu

Affine transformation in the context of Affine geometry

In mathematics, affine geometry is what remains of Euclidean geometry when ignoring (mathematicians often say "forgetting") the metric notions of distance and angle.

As the notion of parallel lines is one of the main properties that is independent of any metric, affine geometry is often considered as the study of parallel lines. Therefore, Playfair's axiom (Given a line L and a point P not on L, there is exactly one line parallel to L that passes through P.) is fundamental in affine geometry. Comparisons of figures in affine geometry are made with affine transformations, which are mappings that preserve alignment of points and parallelism of lines.

↑ Return to Menu

Affine transformation in the context of Improper rotation

In geometry, an improper rotation (also called rotation-reflection, rotoreflection, rotary reflection, or rotoinversion) is an isometry in Euclidean space that is a combination of a rotation about an axis and a reflection in a plane perpendicular to that axis. Reflection and inversion are each a special case of improper rotation. Any improper rotation is an affine transformation and, in cases that keep the coordinate origin fixed, a linear transformation.It is used as a symmetry operation in the context of geometric symmetry, molecular symmetry and crystallography, where an object that is unchanged by a combination of rotation and reflection is said to have improper rotation symmetry.

It is important to note the distinction between rotary reflection and rotary inversion symmetry operations and their associated symmetry elements. Rotary reflections are generally used to describe the symmetry of individual molecules and are defined as a 360Β°/n rotation about an n-fold rotation axis followed by a reflection over a mirror plane perpendicular to the n-fold rotation axis. Rotoinversions are generally used to describe the symmetry of crystals and are defined as a 360Β°/n rotation about an n-fold rotation axis followed by an inversion through the origin. Although rotary reflection operations have a rotoinversion analogue and vice versa, rotoreflections and rotoinversions of the same order need not be identical. For example, a 6-fold rotoinversion axis and its associated with symmetry operations are distinct from those resulting from a 6-fold reflection axis.

↑ Return to Menu